Skip to main content
Log in

Orthogonal Surfaces and Their CP-Orders

  • Published:
Order Aims and scope Submit manuscript

Abstract

Orthogonal surfaces are nice mathematical objects which have interesting connections to various fields, e.g., integer programming, monomial ideals and order dimension. While orthogonal surfaces in one or two dimensions are rather trivial already the three dimensional case has a rich structure with connections to Schnyder woods, planar graphs and three-polytopes. Our objective is to detect more of the structure of orthogonal surfaces in four and higher dimensions. In particular we are driven by the question which non-generic orthogonal surfaces have a polytopal structure. We review the state of knowledge of the three-dimensional situation. On that basis we introduce terminology for higher dimensional orthogonal surfaces and continue with the study of characteristic points and the cp-orders of orthogonal surfaces, i.e., the dominance orders on the characteristic points. In the generic case these orders are (almost) face lattices of polytopes. Examples show that in general cp-orders can lack key properties of face lattices. We investigate extra requirements which may help to have cp-orders which are face lattices. Finally, we turn the focus and ask for the realizability of polytopes on orthogonal surfaces. There are criteria which prevent large classes of simplicial polytopes from being realizable. On the other hand we identify some families of polytopes which can be realized on orthogonal surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adin, R.M., Roichman, Y.: On degrees in the Hasse diagram of the strong Bruhat order. Sém. Lothar. Combin. 53 (B53g), 12p (2006)

  2. Agnarsson, G., Felsner, S., Trotter, W.T.: The maximum number of edges in a graph of bounded dimension, with applications to ring theory. Discrete Math. 201, 5–19 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alon, N., Füredi, Z., Katchalski, M.: Separating pairs of points. Europ. J. Comb. 6, 205–210 (1985)

    MATH  Google Scholar 

  4. Babai, L., Duffus, D.: Dimension and automorphism groups of lattices. Algebra Univers. 12, 279–289 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bárány, I., Rote, G.: Strictly convex drawings of planar graphs. Doc. Math. 11, 369–391 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Bayer, D., Peeva, I., Sturmfels, B.: Monomial resolutions. Math. Res. Lett. 5, 31–46 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected planar graphs. Algorithmica 47, 399–420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar polyline drawings. In: Proceedings WG’02, Lecture Notes Comput. Sci., vol. 2573, pp. 35–46. Springer-Verlag (2002)

  9. Brightwell, G., Trotter, W.T.: The order dimension of convex polytopes. SIAM J. Discrete Math. 6, 230–245 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Fraysseix, H., de Mendez, P.O.: On topological aspects of orientation. Discrete Math. 229, 57–72 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Battista, G., Tamassia, R., Vismara, L.: Output-sensitive reporting of disjoint paths. Algorithmica 23, 302–340 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Felsner, S.: Convex drawings of planar graphs and the order dimension of 3-polytopes. Order 18, 19–37 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Felsner, S.: Geodesic embeddings of planar graphs. Order 20, 135–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felsner, S.: Geometric Graphs and Arrangements. Vieweg Verlag (2004)

  15. Felsner, S.: Lattice structures from planar graphs. Electron. J. Combin. 11, 24p (2004)

  16. Felsner, S.: Empty rectangles and graph dimension. (2006) http://arxiv.org/abs/math.CO/0601767

  17. Felsner, S., Trotter, W.T.: Posets and planar graphs. J. Graph Theory 49, 262–272 (2005)

    Article  MathSciNet  Google Scholar 

  18. Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. In Proceedings Graph Drawing, pp. 417–429, Karlsruhe, Germany (2007)

    Chapter  Google Scholar 

  19. Fusy, E., Poulalhon, D., Schaeffer, G.: Dissection and trees, with applications to optimal mesh encoding and random sampling. In: Proc. 16. ACM-SIAM Sympos. Discrete Algorithms, ACACM Transactions on Algorithms, pp. 690–699 (2005)

  20. Grünbaum, B.: Convex polytopes. Graduate Texts in Mathematics, vol. 221. Springer-Verlag (2003)

  21. Hoşten, S., Morris, W.D.: The order dimension of the complete graph. Discrete Math. 201, 133–139 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kappes, S.: Orthogonal surfaces: A combinatorial approach. PhD thesis. (2006). http://www.math.tu-berlin.de/diskremath/sarahs_diss.pdf

  23. Lin, C., Lu, H., Sun, I.-F.: Improved compact visibility representation of planar graphs via Schnyder’s realizer. SIAM J. Discrete Math. 18, 19–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miller, E.: Planar graphs as minimal resolutions of trivariate monomial ideals. Documenta Math. 7, 43–90 (2002)

    MATH  Google Scholar 

  25. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, Springer-Verlag (2004)

  26. Poulalhon, D., Schaeffer, G.: Optimal coding and sampling of triangulations. Algorithmica 46, 505–527 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Scarf, H.: The Computation of Economic Equilibria. Cowles Foundation Monograph, vol. 24. Yale University Press (1973)

  28. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM Sympos. Discrete Algorithms, pp. 138–148 (1990)

  30. Spencer, J.: Minimal scrambling sets of simple orders. Acta Math. Acad. Sci. Hungar. 22, 349–353 (1972)

    Article  MATH  Google Scholar 

  31. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins University Press (1992)

  32. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152 Springer-Verlag (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Felsner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felsner, S., Kappes, S. Orthogonal Surfaces and Their CP-Orders. Order 25, 19–47 (2008). https://doi.org/10.1007/s11083-007-9075-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-007-9075-z

Keywords

Mathematics Subject Classification (2000)

Navigation