Skip to main content
Log in

Maximum Distance Between Slater Orders and Copeland Orders of Tournaments

  • Published:
Order Aims and scope Submit manuscript

Abstract

Given a tournament T = (X, A), we consider two tournament solutions applied to T: Slater’s solution and Copeland’s solution. Slater’s solution consists in determining the linear orders obtained by reversing a minimum number of directed edges of T in order to make T transitive. Copeland’s solution applied to T ranks the vertices of T according to their decreasing out-degrees. The aim of this paper is to compare the results provided by these two methods: to which extent can they lead to different orders? We consider three cases: T is any tournament, T is strongly connected, T has only one Slater order. For each one of these three cases, we specify the maximum of the symmetric difference distance between Slater orders and Copeland orders. More precisely, thanks to a result dealing with arc-disjoint circuits in circular tournaments, we show that this maximum is equal to n(n − 1)/2 if T is any tournament on an odd number n of vertices, to (n 2 − 3n + 2)/2 if T is any tournament on an even number n of vertices, to n(n − 1)/2 if T is strongly connected with an odd number n of vertices, to (n 2 − 3n − 2)/2 if T is strongly connected with an even number n of vertices greater than or equal to 8, to (n 2 − 5n + 6)/2 if T has an odd number n of vertices and only one Slater order, to (n 2 − 5n + 8)/2 if T has an even number n of vertices and only one Slater order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Black, D.: The Theory of Committees and Elections. Cambridge University Press, Cambridge (1958)

    MATH  Google Scholar 

  2. McLean, I.: The first golden age of social choice, 1784–1803. In: Barnett, W.A., Moulin, H., Salles, M., Schofield, N.J. (eds.) Social Choice, Welfare, and Ethics: Proceedings of the Eighth International Symposium in Economic Theory and Econometrics, pp. 13–33. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. McLean, I., Lorrey, H., Colomer, J.M.: Social choice in Medieval Europe. Electronic Journal for History of Probability and Statistics 4, 1 (2008)

    MathSciNet  Google Scholar 

  4. McLean, I., Urken, A.: Classics of Social Choice. University of Michigan Press, Ann Arbor (1995)

    Google Scholar 

  5. McLean, I., Urken, A.: La réception des œuvres de Condorcet sur le choix social (1794–1803): Lhuilier, Morales et Daunou. In: Chouillet, A.-M., Crépel, P. (eds.) Condorcet, Homme des Lumières et de la Révolution, pp. 147–160. ENS éditions, Fontenay-aux-roses (1997)

  6. marquis de Condorcet, Caritat, M.J.A.N.: Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Paris (1785)

  7. Barthélemy, J.-P., Monjardet, B.: The median procedure in cluster analysis and social choice theory. Math. Soc. Sci. 1, 235–267 (1981)

    Article  MATH  Google Scholar 

  8. Laslier, J.-F.: Tournament Solutions and Majority Voting. Springer, Berlin (1997)

    MATH  Google Scholar 

  9. Moon, J.W.: Topics on Tournaments. Holt, Rinehart and Winston, New York (1968)

    MATH  Google Scholar 

  10. Reid, K.B.: Tournaments. In: Gross, J.L., Yellen, J. (eds.) Handbook of Graph Theory, pp. 156–184. CRC, Boca Raton (2004)

    Google Scholar 

  11. Reid, K.B., Beineke, L.W.: Tournaments. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, pp. 169–204. Academic, New York (1978)

    Google Scholar 

  12. Mckey, B.: Some catalogues of directed graphs. http://cs.anu.edu.au/~bdm/data/digraphs.html (2006)

  13. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms, and Applications. Springer, London (2001)

    MATH  Google Scholar 

  14. Berge, C.: Graphs. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  15. Guilbaud, G.Th.: Les théories de l’intérêt général et le problème logique de l’agrégation. Econ. Appl. 5(4), 501–584 (1952, Reprint in Éléments de la théorie des jeux, Dunod, Paris, 1968)

  16. Laffond, G., Laslier, J.-F., Le Breton, M.: Condorcet choice correspondences: a set-theoretical comparison. Math. Soc. Sci. 30, 23–35 (1995)

    Article  MATH  Google Scholar 

  17. Moulin, H.: Choosing from a tournament. Soc. Choice Welf. 3, 272–291 (1986)

    Article  MathSciNet  Google Scholar 

  18. Slater, P.: Inconsistencies in a schedule of paired comparisons. Biometrika 48, 303–312 (1961)

    Google Scholar 

  19. Copeland, A.H.: A “reasonable” social welfare function. Seminar on Applications of Mathematics to Social Sciences. University of Michigan, Ann Arbor (1951)

  20. Bermond, J.-C.: Ordres à distance minimum d’un tournoi et graphes partiels sans circuits maximaux. Math. Sci. Hum. 37, 5–25 (1972)

    MathSciNet  Google Scholar 

  21. Charon, I., Hudry, O.: An updated survey on the linear ordering problem for weighted or unweighted tournaments. Ann. Oper. Res. 175, 107–158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Charon, I., Hudry, O., Woirgard, F.: Ordres médians et ordres de Slater des tournois. Math. Inform. Sci. Hum. 133, 23–56 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Kemeny, J.G.: Mathematics without numbers. Daedalus 88, 577–591 (1959)

    Google Scholar 

  24. Klamler, C.: Kemeny’s rule and Slater’s rule: a binary comparison. Econ. Bull. 4(35), 1–7 (2003)

    Google Scholar 

  25. Banks, J.: Sophisticated voting outcomes and agenda control. Soc. Choice Welf. 2, 295–306 (1985)

    Article  MathSciNet  Google Scholar 

  26. Charon, I., Hudry, O., Woirgard, F.: A 16-vertex tournament for which Banks set and Slater set are disjoint. Discrete Appl. Math. 80(2–3), 211–215 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hudry, O.: A smallest tournament for which the Banks set and the Copeland set are disjoint. Soc. Choice Welf. 16, 137–143 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Laffond, G., Laslier, J.-F.: Slater’s winners of a tournament may not be in the Banks set. Soc. Choice Welf. 8, 365–369 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Östergård, P.R.J., Vaskelainen, V.P.: A tournament of order 14 with disjoint Banks and Slater sets. Discrete Appl. Math. 158, 588–591 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dodgson, C.L.: A Method of Taking Votes on More Than Two Issues. Clarendon, Oxford (1876, Reprint in Black, D.: The Theory of Committees and Elections, pp. 224–234. Cambridge University Press, Cambridge, Mass., 1958, and in McLean, I., Urken, A.: Classics of Social Choice. University of Michigan Press, Ann Arbor, Michigan, 1995)

  31. Klamler, C.: The Dodgson ranking and its relation to Kemeny’s method and Slater’s rule. Soc. Choice Welf. 23, 91–102 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Arrow, K.J., Raynaud, H.: Social Choice and Multicriterion Decision-Making. MIT, Cambridge (1986)

    MATH  Google Scholar 

  33. Lamboray, C.: A comparison between the prudent order and the ranking obtained with Borda’s, Copeland’s, Slater’s and Kemeny’s rules. Math. Soc. Sci. 54(1), 1–16 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zermelo, E.: Die Berechnung der Turnier-Ergebnisse als ein maximal Problem der Warscheinlichkeistsrechnung. Math. Zeitung 29, 436–460 (1929)

    Article  MathSciNet  Google Scholar 

  35. Landau, H.G.: On dominance relations and the structure of animal societies III. The condition for a score structure. Bull. Math. Biophys. 15, 143–148 (1953)

    Article  MathSciNet  Google Scholar 

  36. Barthélemy, J.-P.: Caractérisations axiomatiques de la distance de la différence symétrique entre des relations binaires. Math. Sci. Hum. 67, 85–113 (1979)

    MATH  Google Scholar 

  37. Hudry, O.: On the complexity of Slater’s problems. Eur. J. Oper. Res. 203, 216–221 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Woirgard, F.: Recherche et dénombrement des ordres médians des tournois. Ph.D. thesis, ENST, Paris (1997)

  39. Laffond, G., Laslier, J.-F., Le Breton, M.: The Copeland measure of Condorcet choice functions. Discrete Appl. Math. 55, 273–279 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Charon, I., Guénoche, A., Hudry, O., Woirgard, F.: A bonsaï branch and bound method applied to voting theory. In: Proceedings of Ordinal and Symbolic Data Analysis, pp. 309–318. Springer Verlag (1996)

  41. Charon, I., Guénoche, A., Hudry, O., Woirgard, F.: New results on the computation of median orders. Discrete Math. 165–166, 139–154 (1997)

    Article  Google Scholar 

  42. Remage, R., Thompson, W.A.: Maximum likelihood paired comparison rankings. Biometrika 53, 143–149 (1966)

    MathSciNet  MATH  Google Scholar 

  43. Guénoche, A.: Vainqueurs de Kemeny et tournois difficiles. Math. Inf. Sci. Hum. 133, 57–66 (1996)

    MATH  Google Scholar 

  44. Young, H.P., Levenglick, A.: A consistent extension of Condorcet’s election principle. SIAM J. Appl. Math. 35, 285–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Hudry.

Additional information

Research supported by the ANR project “Computational Social Choice” n° ANR-09-BLAN-0305-03.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charon, I., Hudry, O. Maximum Distance Between Slater Orders and Copeland Orders of Tournaments. Order 28, 99–119 (2011). https://doi.org/10.1007/s11083-010-9155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9155-3

Keywords

Navigation