Skip to main content
Log in

\(\mathcal {Z}\)-quasidistributive and \(\mathcal {Z}\)-meet-distributive Posets

  • Published:
Order Aims and scope Submit manuscript

Abstract

Given any subset selection \(\mathcal {Z}\) for posets, we study two weakenings of the known concept of \(\mathcal {Z}\)-predistributivity, namely, \(\mathcal {Z}\)-quasidistributivity and \(\mathcal {Z}\)-meet-distributivity. The former generalizes quasicontinuity, and the latter meet-continuity of complete lattices. We show for global completions \(\mathcal {Z}\) that the \(\mathcal {Z}\)-quasidistributive and \(\mathcal {Z}\)-meet-distributive posets are the \(\mathcal {Z}\)-predistributive ones. For the \(\mathcal {Z}\)-Δ-ideal completion \(\mathcal {Z}^{\Delta } P = \{ Y\subseteq P: {\Delta }^{\mathcal {Z}}Y = Y\}\), \(\mathcal {P}\)-quasidistributivity is \(\mathcal {Z}\)-quasidistributivity plus \(\mathcal {Z}^{\Delta }\)-quasidistributivity, provided \({\Delta }^{\mathcal {Z}}\) is idempotent. For \(\mathcal {Z}\)-continuous normal completions e : PN, we show that \(\mathcal {Z}\)-quasidistributivity of P implies that of N, and the converse holds as well if e is \(\mathcal {Z}\)-initial. This supplements the corresponding results, due to Erné, on the completion-invariance of \(\mathcal {Z}\)-predistributivity and \(\mathcal {Z}\)-meet-distributivity. If \(\mathcal {Z}\) is a subset system and the \(\mathcal {Z}\)-below relation on the subsets of a poset P has the interpolation property then P is \(\mathcal {Z}\)-quasidistributive and may be embedded in a cube by a map that is \(\mathcal {Z}^{\Delta }\)-continuous and continuous for the lower topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion. Arch. Math. 18, 369–377 (1967)

    Article  MathSciNet  Google Scholar 

  2. Baranga, A.: Z-continuous posets, topological aspects. Stud. Cerc. Mat. 49, 3–16 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Crawley, P., Dilworth, R.P.: Algebraic Theory of Lattices. Prentice-Hall, Inc., Englewood Cliffs (1973)

    MATH  Google Scholar 

  4. Dedekind, R.: Stetigkeit Und Irrationale Zahlen. Vieweg, Braunschweig (1872)

    MATH  Google Scholar 

  5. Erné, M.: A completion-invariant extension of the concept of continuous lattices. In: Banaschewski, B., Hoffmann, R.-E. (eds.) Continuous Lattices, Proc. Bremen 1979, Lecture Notes in Math. 871, pp 43–60. Springer, Berlin (1981)

    Google Scholar 

  6. Erné, M.: Scott convergence and Scott topology on partially ordered sets II. In: Banaschewski, B., Hoffman, R.-E. (eds.) Continuous Lattices, Proc. Bremen 1979, Lecture Notes in Math. 871, pp 61–96. Springer, Berlin (1981)

    Google Scholar 

  7. Erné, M.: Distributivgesetze und die Dedekindsche schnittvervollständigung. Abh. Braun-schweig. Wiss. Ges. 33, 117–145 (1982)

    MathSciNet  MATH  Google Scholar 

  8. Erné, M.: Adjunctions and standard constructions for partially ordered sets. In: Eigenthaler, G., et al. (eds.) Contributions to General Algebra 2, Proc. Klagenfurt, 1982, pp 77–106. Wien, Hölder - Pichler - Tempsky (1983)

  9. Erné, M.: Order extensions as adjoint functors. Quaest. Math. 9, 149–206 (1986)

    Article  MathSciNet  Google Scholar 

  10. Erné, M.: The Dedekind-MacNeille completion as a reflector. Order 8, 159–173 (1991)

    Article  MathSciNet  Google Scholar 

  11. Erné, M.: \(\mathcal {Z}\)-continuous posets and their topological manifestation. Appl. Cat. Struct. 7, 31–70 (1999)

    Article  MathSciNet  Google Scholar 

  12. Erné, M.: Infinite distributive laws versus local connectedness and compactness properties. Topol. Appl. 156, 2054–2069 (2009)

    Article  MathSciNet  Google Scholar 

  13. Erné, M.: Categories of locally hypercompact spaces and quasicontinuous posets. Appl. Categ. Struct. 26, 823–854 (2018)

    Article  MathSciNet  Google Scholar 

  14. Frink, O.: Ideals in partially ordered sets. Amer. Math. Monthly 61, 223–234 (1954)

    Article  MathSciNet  Google Scholar 

  15. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  16. Gierz, G., Lawson, J.D., Stralka, A.R.: Quasicontinuous posets. Houston J. Math. 9, 191–208 (1983)

    MathSciNet  MATH  Google Scholar 

  17. Harding, J., Bezhanishvili, G.: Macneille completions of Heyting algebras. Houston J. Math. 30, 937–952 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Heckmann, R., Keimel, K.: Quasicontinuous domains and the Smyth powerdomain. Electron. Notes Theor. Comput. Sci. 298, 215–232 (2013)

    Article  MathSciNet  Google Scholar 

  19. MacNeille, H.M.: Partially ordered sets. Trans. Amer. Math. Soc. 42, 416–460 (1937)

    Article  MathSciNet  Google Scholar 

  20. Menon, V.G.: A note on topology of Z-continuous posets. Comment. Math. Univ. Carolin. 37, 821–824 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Niederle, J.: On infinitely distributive ordered sets. Math. Slovaca 55, 495–502 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Nowak, D.: Generalization of continuous posets. Trans. Amer. Math. Soc. 272, 645–667 (1982)

    Article  MathSciNet  Google Scholar 

  23. Ruan, X., Xu, X.: sZ-quasicontinuous posets and meet sZ-continuous posets. Topol. Appl. 230, 295–307 (2017)

    Article  Google Scholar 

  24. Ruan, X., Xu, X.: A completion-invariant extension of the concept of quasi C-continuous lattices. Filomat 31(8), 2345–2353 (2017)

    Article  MathSciNet  Google Scholar 

  25. Schmidt, J.: Zur Kennzeichnung der Dedekind-MacNeilleschen hülle einer geordneten Menge. Arch. Math. 7, 241–249 (1956)

    Article  Google Scholar 

  26. Venugopalan, P.: A generalization of completely distributive lattices. Algebra Universalis 27, 578–586 (1990)

    Article  MathSciNet  Google Scholar 

  27. Venugopalan, P.: Quasicontinuous posets. Semigroup Forum 41, 193–200 (1990)

    Article  MathSciNet  Google Scholar 

  28. Yang, J., Xu, X.: The dual of a generalized completely distributive lattice is a hypercontinuous lattice. Algebra Universalis 63, 275–281 (2010)

    Article  MathSciNet  Google Scholar 

  29. Zhang, Z., Li, Q.: A generalization of the Dedekind-MacNeille completion. Semigroup Forum 96, 553–564 (2018)

    Article  MathSciNet  Google Scholar 

  30. Zhang, W., Xu, X.: s2-Quasicontinuous posets. Theor. Comp. Sci. 574, 78–85 (2015)

    Article  Google Scholar 

  31. Zhang, W., Xu, X.: The σ1-topology and λ1-topology on s1-quasicontinuous posets. Topol. Appl. 204, 79–89 (2016)

    Article  Google Scholar 

  32. Zhang, W., Xu, X.: Frink quasicontinuous posets. Semigroup Forum 94, 6–16 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are indebted to Marcel Erné, who directed our attention to the useful notions of \(\mathcal {Z}\)-continuity and \(\mathcal {Z}\)-initiality, and gave many valuable hints that have improved considerably the first draft of this paper, in which most of the results were established only for the case \(\mathcal {Z} = \mathcal {P}_{m}\) or \(\mathcal {Z} = \mathcal {P}_{m}^{\ {\Delta }}\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (Nos. 11701238, 11661057), the Natural Science Foundation of Jiangxi Province (Nos. 20161BAB211017, 20161BAB2061004) and the Young Talent Support Plan of Jiangxi Science and Technology Normal University (No. 2016QNBJRC008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xu, X. \(\mathcal {Z}\)-quasidistributive and \(\mathcal {Z}\)-meet-distributive Posets. Order 37, 103–113 (2020). https://doi.org/10.1007/s11083-019-09495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-019-09495-2

Keywords

Navigation