Skip to main content
Log in

Performance analysis of multi-fiber WDM network with limited-range wavelength conversion

  • Original Article
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Wavelength routed optical networks have emerged as a technology that can effectively utilize the enormous bandwidth of the optical fiber. Wavelength conversion technology and wavelength converters play an important role in enhancing fiber utilization and in reducing the overall call blocking probability of the network. In this paper, we develop a new analytical model to calculate the average blocking probability in multi-fiber link networks using limited-range wavelength conversion. Based on the results obtained, we conclude that the proposed analytical model is simple and yet can effectively analyze the impact of wavelength conversion ranges and number of fibers on network performance. Also a new heuristic approach for placement of wavelength converters to reduce blocking probabilities is explored. Finally, we analyze network performance with the proposed scheme. It can be observed from numerical simulations that limited-range converters placed at a few nodes can provide almost the same blocking probability as full range wavelength converters placed at all the nodes. We also show that being equipped with a multi-fiber per-link has the same effect as being equipped with the capability of limited-range wavelength conversion. So a multi-fiber per-link network using limited-range wavelength conversion has similar blocking performance as a full wavelength convertible network. Since a multi-fiber network using limited-range wavelength conversion could use fewer converters than a single-fiber network using limited range wavelength conversion and because wavelength converters are today more expensive than fiber equipment, a multi-fiber network in condition with limited-range wavelength conversion is less costly than a single-fiber network using only limited-range wavelength conversion. Thus, multi-fiber per-link network using limited-range wavelength conversion is currently a more practical method for all optical WDM networks. Simulation studies carried out on a 14-node NSFNET, a 10-node CERNET (China Education and Research Network), and a 9-node regular mesh network validate the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mouftah H.T. (2000) All optical wavelength conversion technologies and applications in DWDM networks. IEEE Commun. Mag. 38(3): 86–92

    Article  Google Scholar 

  2. Yoo S.J.B. (1996) Wavelength conversion technologies for WDM network applications. IEEE/OSA J. Lightwave Technol. 14(6): 955–966

    Article  Google Scholar 

  3. Campi D., Coriasso C. (2000) Wavelength conversion technologies. Photonic Netw. Commun. 2(1): 85–95

    Article  Google Scholar 

  4. Ramaswani R., Sivarajan K. (1998) Optical Networks: A Practical Perspective. Morgan Kaufmann, Los Altos, CA, USA

    Google Scholar 

  5. Mukherjee B. (1997) Optical Networks. McGraw-Hill, New York, NY, USA

    Google Scholar 

  6. Venugopal, K.R., Achutharam, M., Sreenivasa Kumar, P.: An adaptive algorithm to reduce wavelength conversion and congestion in all optical networks. In: Proceedings of the International Conference on Advanced Computing, vol. 1, pp. 386–393. Pune, India (1998)

  7. Berman A. (1996) Computing approximate blocking probabilities for a class of all optical networks. IEEE J. Select. Areas Commun. 14(6): 852–857

    Article  Google Scholar 

  8. Hsu C.F., Liu T.L., Huang N.F. (2003) Performance of adaptive routing in wavelength routed networks with wavelength conversion capability. Photonic Netw. Commun. 5(1): 41–57

    Article  Google Scholar 

  9. Subramaniam S., Azizoğlu M., Somani A.K. (1996) All optical networks with sparse wavelength conversion. IEEE/ACM Trans. Netw. 4(9): 544–557

    Article  Google Scholar 

  10. Yates, J., et al.: Limited wavelength conversion in all optical networks. In: Proceedings of IEEE INFOCOM’96, vol. 2, pp. 954–961. San Francisco, CA, USA (1996)

  11. Venugopal, K.R., Shivakumar, M., Kumar, P.S.: A heuristic for placement of limited range wavelength converters in all optical networks. In: Proceedings of IEEE INFOCOM’99, vol. 2, pp. 908–915. New York, NY, USA (1999)

  12. Ramaswami, R., Sasaki, G.: Multiwavelength optical networks with limited wavelength conversion. In: Proceedings of IEEE INFOCOM’97, vol. 2, pp. 489–498. Kobe, Japan (1997)

  13. Tripathi, T., Sivarajan, K.: Computing approximate blocking probabilities in wavelength routed all optical networks with limited range wavelength conversion. In: Proceedings of IEEE INFOCOM’99, vol. 1, pp. 329–336. New York, NY, USA (1999)

  14. Qin H., Zhang S., Zengji L. (2003) Dynamic routing and wavelength assignment for limited range wavelength conversion. IEEE Commun. Lett. 7(3): 136–138

    Article  Google Scholar 

  15. Iness J., Mukherjee B. (1999) Sparse wavelength conversion in wavelength routed WDM optical networks. Photonic Netw. Commun. 1(3): 183–205

    Article  Google Scholar 

  16. Shen G., Cheng T.H., Bose S.K., Lu C., Chai T.Y., Hosseini H.M.M. (2001) Approximate analysis of limited-range wavelength conversion all-optical WDM networks. Compu. Commun. 24(5): 949–957

    Article  Google Scholar 

  17. Lee K.C., Li V. (1993) A wavelength convertible optical network. IEEE/OSA J. Lightwave Technol. 11(5/6): 962–970

    Article  Google Scholar 

  18. Venugopal, K.R., Rajanand, E.E., Kumar, K.P.S.: Performance analysis of wavelength converters in WDM wavelength routed optical networks. In: Proceedings of the IEEE International Conference on High Performance Computing, vol. 1, pp. 239–246. Chennai, India (1998)

  19. Vernugopal K.R., Rajan E., Kumar N. (1999) Impact of wavelength converters in wavelength routed all-optical networks. Comput. Commun. 22(3): 244–257

    Article  Google Scholar 

  20. Subramaniam, S., Azizoglu, M., Somani, A.K.: On the optimal placement of wavelength converters in wavelength routed networks. In: Proceedings of IEEE INFOCOM’98, vol. 2, pp. 893–901. San Francisco, CA, USA (1998)

  21. Arora, A.S., Subramaniam, S.: Converter placement in wavelength routing mesh topologies. In: Proceedings of IEEE ICC’00, vol. 3, pp. 1282–1288. New Orleans, LA, USA (2000)

  22. Thiagarajan, S., Somanti, A.K.: An efficient algorithm for optimal wavelength converter placement on wavelength routed networks with arbitrary topologies. In: Proceedings of IEEE INFOCOM’99, vol. 2, pp. 916–923. New York, NY, USA (1999)

  23. Xiao G., Leung Y.W. (1999) Algorithms for allocating wavelength converters in all optical networks. IEEE/ACM Trans. Netw. 7(4): 545–557

    Article  Google Scholar 

  24. Arora A., Subramaniam S. (2002) Wavelength conversion placement in WDM mesh optical networks. Photonic Netw. Commun. 4(2): 167–177

    Article  Google Scholar 

  25. Bose, S.K., Singh, Y.N., Raju, N.S.V.B., Popat, B.: Sparse converter placement in WDM networks and their dynamic operation using path metric based algorithms. In: Proceedings of IEEE ICC’2002, vol. 5, pp. 2855–2859. New York, NY, USA (2002)

  26. Barry R.A., Humblet P.A. (1996) Models of blocking probability in all optical networks with and without wavelength changers. IEEE J. Select. Areas Commun. 14(6): 858–867

    Article  Google Scholar 

  27. Girard A. (1990) Routing and Dimensioning in Circuit Switched Networks. Addison Wesley, Reading, MA

    Google Scholar 

  28. Subramaniam, S., Barry, R.A.: Wavelength assignment in fixed routing WDM networks. In: Proceedings of IEEE ICC’97, vol. 1, pp. 406–410. Montreal, CA, USA (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao Ziyu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziyu, S., Dongbin, Y., Zhengbin, L. et al. Performance analysis of multi-fiber WDM network with limited-range wavelength conversion. Photon Netw Commun 13, 195–205 (2007). https://doi.org/10.1007/s11107-006-0003-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-006-0003-8

Keywords

Navigation