Skip to main content
Log in

An analytical model for input-buffered optical packet switches with reconfiguration overhead

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

The overhead associated with reconfiguring a switch fabric in optical packet switches is an important issue in relation to the packet transmission time and can adversely affect switch performance. The reconfiguration overhead increases the mean waiting time of packets and reduces throughput. The scheduling of packets must take into account the reconfiguration frequency. This work proposes an analytical model for input-buffered optical packet switches with the reconfiguration overhead and analytically finds the optimal reconfiguration frequency that minimizes the mean waiting time of packets. The analytical model is suitable for several round-robin (RR) scheduling schemes in which only non-empty virtual output queues (VOQs) are served or all VOQs are served and is used to examine the effects of the RR scheduling schemes and various network parameters on the mean waiting time of packets. Quantitative examples demonstrate that properly balancing the reconfiguration frequency can effectively reduce the mean waiting time of packets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aissani A.: Optimal control of an M/G/1 retrial queue with vacations. J. Syst. Sci. Syst. Eng. 17, 487–502 (2008). doi:10.1007/s11518-008-5093-7

    Article  Google Scholar 

  2. Alaria V., Bianco A., Giaccone P., Leonardi E., Neri F.: Multihop control schemes in switches with reconfiguration latency. IEEE/OSA J. Opt. Commun. Netw. 1(3), B40–B55 (2009)

    Article  Google Scholar 

  3. Boxma O., Groenendijk W.: Waiting times in discrete-time cyclic-service systems. IEEE Trans. Commun. 36(2), 164–170 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruneel H., Kim B.G.: Discrete-Time Models for Communication Systems Including ATM. Kluwer Academic Publishers, Norwell, MA (1992)

    Google Scholar 

  5. Callegati F.: Optical buffers for variable length packets. IEEE Commun. Lett. 4(9), 292–294 (2000)

    Article  Google Scholar 

  6. Chou K.H., Lin W.: A latency-aware scheduling algorithm for all-optical packet switching networks with FDL buffers. Photonic Netw. Commun. 21, 45–55 (2011). doi:10.1007/s11107-010-0279-6

    Article  Google Scholar 

  7. Fuhrmann S., Cooper R.: Stochastic decompositions in the M/G/1 queue with generalized vacations. Oper. Res. 33(5), 1117–1129 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hluchyj M., Karol M.: Queueing in high-performance packet switching. IEEE J. Sel. Areas. Commun. 6(9), 1587–1597 (1988)

    Article  Google Scholar 

  9. Kim J., Nuzman C., Kumar B., Lieuwen D., Kraus J., Weiss A., Lichtenwalner C., Papazian A., Frahm R., Basavanhally N., Ramsey D., Aksyuk V., Pardo F., Simon M., Lifton V., Chan H., Haueis M., Gasparyan A., Shea H., Arney S., Bolle C., Kolodner P., Ryf R., Neilson D., Gates J.: 1100 × 1100 port MEMS-based optical crossconnect with 4-dB maximum loss. Photonics Technol. Lett., IEEE 15(11), 1537–1539 (2003)

    Article  Google Scholar 

  10. Kleinrock, L., Levy, H.: The analysis of random polling systems. Oper. Res. 36(5):716–732 (1988) http://or.journal.informs.org/cgi/reprint/36/5/716.pdf

  11. Leung, K., Eisenberg, M.: A single-server queue with vacations and gated time-limited service. In: INFOCOM ’89. Proceedings of the Eighth Annual Joint Conference of the IEEE Computer and Communications Societies. Technology: Emerging or Converging, IEEE, 3:897–906 (1989)

  12. Leung K.K., Eisenberg M.: A single-server queue with vacations and non-gated time-limited service. Perform. Evaluation 12(2), 115–125 (1991)

    Article  MathSciNet  Google Scholar 

  13. Li V., Li C.Y., Wai P.K.A.: Alternative structures for two-dimensional MEMS optical switches [invited]. J. Opt. Netw. 3(10), 742–757 (2004)

    Article  Google Scholar 

  14. Li X., Hamdi M.: On scheduling optical packet switches with reconfiguration delay. IEEE J. Sel. Areas. Commun. 21(7), 1156–1164 (2003)

    Article  Google Scholar 

  15. Liu W., Xu X., Tian N.: Stochastic decompositions in the M/M/1 queue with working vacations. Oper. Res. Lett. 35(5), 595–600 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma X., Kuo G.S.: Optical switching technology comparison: optical MEMS vs. other technologies. Commun. Mag., IEEE 41(11), S16–S23 (2003)

    Google Scholar 

  17. Madamopoulos N., Kaman V., Yuan S., Jerphagnon O., Helkey R., Bowers J.: Applications of large-scale optical 3D-MEMS switches in fiber-based broadband-access networks. Photonic Netw. Commun. 19(1), 62–73 (2010)

    Article  Google Scholar 

  18. McKeown N.: The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Trans. Netw. 7(2), 188–201 (1999)

    Article  Google Scholar 

  19. Mi X., Soneda H., Okuda H., Tsuboi O., Kouma N., Mizuno Y., Ueda S., Sawaki I.: A multi-chip directly mounted 512-MEMS-mirror array module with a hermetically sealed package for large optical cross-connects. J. Opt. A: Pure. Appl. Opt. 8(7), S341 (2006)

    Article  Google Scholar 

  20. Neilson D.T., Frahm R., Kolodner P., Bolle C.A., Ryf R., Kim J., Papazian A.R., Nuzman C.J., Gasparyan A., Basavanhally N.R., Aksyuk V.A., Gates J.V.: 256 × 256 port optical cross-connect subsystem. J. Lightw. Technol. 22(6), 1499 (2004)

    Article  Google Scholar 

  21. Pan D., Yang Y.: Bandwidth guaranteed multicast scheduling for virtual output queued packet switches. J. Parallel. Distrib. Comput. 69(12), 939–949 (2009)

    Article  MathSciNet  Google Scholar 

  22. Papadimitriou G., Papazoglou C., Pomportsis A.: Optical switching: switch fabrics, techniques, and architectures. J. Lightw. Technol. 21(2), 384–405 (2003)

    Article  Google Scholar 

  23. Takagi,H.: Queuing Analysis: A Foundation of Performance Evaluation. North-Holland, (1993)

  24. Wang, H., Aw, E., Williams, K., Wonfor, A., Penty, R., White, I.: Lossless multistage SOA switch fabric using high capacity monolithic 4 × 4 SOA circuits. In: Optical Fiber Communication: incudes post deadline papers, 2009. OFC 2009, pp. 1–3 (2009)

  25. Wu, B, Yeung, K: Traffic scheduling in non-blocking optical packet switches with minimum delay. In: Global Telecommunications Conference, 2005. GLOBECOM ’05. IEEE 4:5-2045 (2005)

  26. Wu B., Yeung K.L., Hamdi M., Li X.: Minimizing internal speedup for performance guaranteed switches with optical fabrics. IEEE/ACM Trans. Netw. 17(2), 632–645 (2009)

    Article  Google Scholar 

  27. Wu B., Yeung K.L., Ho P.H., Jiang X.: Minimum delay scheduling for performance guaranteed switches with optical fabrics. J. Lightw. Technol. 27(16), 3453–3465 (2009)

    Article  Google Scholar 

  28. Xu X., Zhang Z.G.: Analysis of multi-server queue with a single vacation (e, d)-policy. Perform. Evaluation 63(8), 825–838 (2006)

    Article  Google Scholar 

  29. Yuan, S., Lee, C.: Scaling optical switches to 100 Tb/s capacity. In: Photonics in Switching, Optical Society of America, p. PWB3 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woei Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, KH., Lin, W. An analytical model for input-buffered optical packet switches with reconfiguration overhead. Photon Netw Commun 22, 209–220 (2011). https://doi.org/10.1007/s11107-011-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-011-0320-4

Keywords

Navigation