Skip to main content
Log in

Design proposal of a photonic multicast Bloom filter node

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This paper presents the design of a hardware accelerated forwarding architecture for processing packets that are labelled with a Bloom Filter (BF)-based header. The architecture consists of a conventional broadcast-and-select all-optical switching fabric, composed of Semiconductor Optical Amplifiers (SOAs), and a hardware-based Serial Processing Unit (SPU) that uses an on-the-fly processing mechanism to forward optical packets. The proposed SPU avoids the use of memory units and uses a small number of logic gates that facilitate a straightforward all-optical implementation using photonic logic gates. The SPU also supports flexible wavelength multicasting by allowing each incoming wavelength to be forwarded to any number of output ports. Contention resolution is provided by the introduction of an Optical Delay Line (ODL) that provides a single-packet optical buffer if the output channel is occupied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andriolli, N., Scaffardi, M., Berrettini, G., Castoldi, P., Poti, L., Bogoni, A.: Ultra-fast all-optical interconnection network fully based on modular integrable photonic digital processing. In: Photonics in Switching, 2007, pp. 63 –64 (2007)

  2. Bloom B.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13, 422–426 (1970)

    Article  MATH  Google Scholar 

  3. Broder A., Mitzenmacher M.: Network applications of Bloom filters: A survey. Internet Math. 1(4), 485–509 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donnet, B., Baynat, B., Friedman, T.: Retouched Bloom filters: allowing networked applications to trade off selected false positives against false negatives. In: Proceedings of the 2006 ACM CoNEXT Conference, CoNEXT ’06, pp. 13:1–13:12 (2006)

  5. Dorren H., Hill M., Liu Y., Calabretta N., Srivatsa A., Huijskens F., de Waardt H., Khoe G.: Optical packet switching and buffering by using all-optical signal processing methods. J. Lightwave Technol. 21(1), 2–12 (2003)

    Article  Google Scholar 

  6. Fortenberry R., Lowery A., Ha W., Tucker R.: Photonic packet switch using semiconductor optical amplifier gates. Electron. Lett. 27(14), 1305–1307 (1991)

    Article  Google Scholar 

  7. Jarno R., Särelä M., Visala K., Riihijärvi J.: On name-based inter-domain routing. Comput. Netw. 55, 975–986 (2011)

    Article  Google Scholar 

  8. Jokela P., Zahemszky A., Rothenberg C., Arianfar S., Nikander P.: Lipsin: line speed publish/subscribe inter-networking. SIGCOMM Comput. Commun. Rev. 39, 195–206 (2009)

    Article  Google Scholar 

  9. Li P., Huang D., Zhang X.: Soa-based ultrafast multifunctional all-optical logic gates with polsk modulated signals. IEEE J. Quantum Electron. 45(12), 1542–1550 (2009)

    Article  MathSciNet  Google Scholar 

  10. Minh, H., Ghassemlooy, Z., Ng, W.: Ultrafast header processing in all-optical packet switched-network. In: Proceedings of ICTON2005, pp. 50–53 (2005)

  11. Miyoshi Y., Ikeda K., Tobioka H., Inoue T., Namiki S., Kitayama K.: Ultrafast all-optical logic gate using a nonlinear optical loop mirror based multi-periodic transfer function. Opt. Express 16, 2570–2577 (2008)

    Article  Google Scholar 

  12. Rothenberg, C., Verdi, F., Magalhes, M.: Towards a new generation of information-oriented internetworking architectures. In: First Workshop on Re-Architecting the Internet (2008)

  13. Trossen D., Särelä M., Sollins K.: Arguments for an information-centric internetworking architecture. SIGCOMM Comput. Commun. Rev. 40, 26–33 (2010)

    Article  Google Scholar 

  14. Tucker R., Zhong W.D.: Photonic packet switching: an overview. IEICE Trans. Commun. E82-B(2), 254–264 (1999)

    Google Scholar 

  15. Webb R., Yang X., Manning R., Maxwell G., Poustie A., Lardenois S., Cotter D.: All-optical binary pattern recognition at 42 gb/s. J. Lightwave Technol. 27(13), 2240–2245 (2009)

    Article  Google Scholar 

  16. Yeo, Y., Xu, Z., Wang, D., Liu, J., Wang, Y., Cheng, T.: High-speed optical switch fabrics with large port count. Opt. Express 17(13), 10,990–10,997 (2009). http://www.opticsexpress.org/abstract.cfm?URI=oe-17-13-10990

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. AL-Naday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

AL-Naday, M.F., Almeida, R.C., Guild, K.M. et al. Design proposal of a photonic multicast Bloom filter node. Photon Netw Commun 24, 132–137 (2012). https://doi.org/10.1007/s11107-012-0373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-012-0373-z

Keywords

Navigation