Skip to main content
Log in

An analytical model for all-optical packet switching networks with finite FDL buffers

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Signal loss and noise accumulation can cause fading in optical buffers implemented by fiber delay lines (FDLs). Optical packets that excessively recirculate through FDLs are easily dropped from their routing paths. Therefore, analytical models and packet scheduling schemes require additional considerations for FDL buffers. This work proposes an analytical model for all-optical packet switching networks with finite FDL buffers and a general class of scheduling schemes including many basic scheduling schemes. We intend to minimize the packet loss probability by ranking packets to achieve an optimal balance between latency and residual lifetime in the general class of scheduling schemes. The analytical model is based on a non-homogeneous Markovian analysis to study the effects of various scheduling schemes on packet loss probability and average latency. Analytical results show how various network parameters affect the optimal balance, and illustrate how properly balancing latency and residual distance can significantly improve network performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alaria, V, Bianco, A, Giaccone, P, Leonardi, E, Neri, F, Syst, C: Multi-hop scheduling algorithms in switches with reconfiguration latency. In: 2006 Workshop on High Performance Switching and Routing, p 6 (2006)

  2. Als, A., Ghassemlooy, Z., Swift, G., Ball, P., Chi, J.: Performance of the passive recirculating fiber loop buffer within an OTDM transmission link. Opt. Commun. 209(1–3), 137–147 (2002)

    Article  Google Scholar 

  3. Burmeister, E., Mack, J., Poulsen, H., Mašanovic, M., Stamenic, B., Blumenthal, D., Bowers, J.: Photonic integrated circuit optical buffer for packet-switched networks. Opt. Express 17(8), 6629–6635 (2009)

    Article  Google Scholar 

  4. Burmeister, E.F., Bowers, J.E.: Integrated gate matrix switch for optical packet buffering. IEEE Photonics Technol. Lett. 18(1), 103–105 (2006). doi:10.1109/LPT.2005.860386

    Article  Google Scholar 

  5. Cheng, J.: Constructions of optical 2-to-1 fifo multiplexers with a limited number of recirculations. IEEE Trans. Inf. Theory 54(9), 4040–4052 (2008). doi:10.1109/TIT.2008.928285

    Article  Google Scholar 

  6. Cheng, J., Chang, C., Yang, S., Chao, T., Lee, D., Lien, C.: Constructions of optical queues with a limited number of recirculations-part i: Greedy constructions. Arxiv, preprint arXiv:10044070, (2010)

  7. Chlamtac, I., Fumagalli, A., Suh, C.J.: Multibuffer delay line architectures for efficient contention resolution in optical switching nodes. IEEE Trans. Commun. 48(12), 2089–2098 (2000). doi:10.1109/26.891219

    Article  Google Scholar 

  8. Chou, K.H., Lin, W.: A latency-aware scheduling algorithm for all-optical packet switching networks with FDL buffers. Photonic Netw. Commun. 21, 45–55 (2011). doi:10.1007/s11107-010-0279-6

    Article  Google Scholar 

  9. Debnath, S., Mahapatra, S., Gangopadhyay, R.: Analysis of an optical packet switch with partially shared buffer and wavelength conversion. IET Commun. 1(4), 810–818 (2007). doi:10.1049/iet-com:20060537

    Article  Google Scholar 

  10. Diao, J., Chu, P.L.: Analysis of partially shared buffering for WDM optical packet switching. IEEE/OSA J. Lightwave Technol. 17(12), 2461–2469 (1999). doi:10.1109/50.809664

    Article  Google Scholar 

  11. Geldenhuys, R., Chi, N., Monroy, I.T., Koonen, A.M.J., Dorren, H.J.S., Leuschner, F.W., Khoe, G.D., Yu, S., Wang, Z.: Multiple recirculations through crosspoint switch fabric for recirculating optical buffering. Electron. Lett. 41(20), 1136–1138 (2005). doi:10.1049/el:20052568

    Article  Google Scholar 

  12. Harai, H., Murata, M.: High-speed buffer management for 40 gb/s-based photonic packet switches. IEEE/ACM Trans. Netw. 14(1), 191–204 (2006). doi:10.1109/TNET.2005.863450

    Article  Google Scholar 

  13. Harai, H., Murata, M.: Optical fiber-delay-line buffer management in output-buffered photonic packet switch to support service differentiation. IEEE J. Sel. Areas Commun. 24(8), 108–116 (2006)

    Google Scholar 

  14. Hluchyj, M.G., Karol, M.J.: Queueing in high-performance packet switching. IEEE J. Sel. Areas Commun. 6(9), 1587–1597 (1988). doi:10.1109/49.12886

    Article  Google Scholar 

  15. Huang, X., Cheng, J.: Constructions of optical queues with a limited number of recirculations-part ii: Optimal constructions. (2010) Arxiv, preprint arXiv:10044277

  16. Hunter, D.K., Chia, M.C., Andonovic, I.: Buffering in optical packet switches. IEEE/OSA J. Lightwave Technol. 16(12), 2081–2094 (1998). doi:10.1109/50.736577

    Article  Google Scholar 

  17. Hunter, D.K., Cornwell, W.D., Gilfedder, T.H., Franzen, A., Andonovic, I.: Slob: a switch with large optical buffers for packet switching. IEEE/OSA J. Lightwave Technol. 16(10), 1725–1736 (1998). doi:10.1109/50.721059

    Article  Google Scholar 

  18. Jhou, G.H., Lin, W.: A frame-based architecture with shared buffers for slotted optical packet switching. In: High Performance Computing and Communications, 2009. HPCC ’09. 11th IEEE International Conference on, pp. 322–328, (2009) doi:10.1109/HPCC.2009.73

  19. Karol, M., Hluchyj, M., Morgan, S.: Input versus output queueing on a space-division packet switch. IEEE Trans. Commun. 35(12), 1347–1356 (1987)

    Article  Google Scholar 

  20. Larsen, C., Gustavsson, M.: Linear crosstalk in 44 semiconductor optical amplifier gate switch matrix. J. Lightwave Technol. 15(10), 1865–1870 (1997). doi:10.1109/50.633575

    Article  Google Scholar 

  21. Lazzez, A., Khlifi, Y., Boudriga, N., Obaidat, M.: A novel node architecture for optical networks: modeling, analysis and performance evaluation. Comput. Commun. 30(5), 999–1014 (2007)

    Article  Google Scholar 

  22. Leclerc, O., Lavigne, B., Balmefrezol, E., Brindel, P., Pierre, L., Rouvillain, D., Seguineau, F.: Optical regeneration at 40 gb/s and beyond. IEEE/OSA J. Lightwave Technol. 21(11), 2779 (2003)

    Article  Google Scholar 

  23. Li, C., Knightly, E.W.: Coordinated multihop scheduling: a framework for end-to-end services. IEEE/ACM Trans. Netw. 10, 776–789 (2002). doi:10.1109/TNET.2002.805024

    Article  Google Scholar 

  24. Liang, B., Dong, M.: Packet prioritization in multihop latency aware scheduling for delay constrained communication. IEEE J. Sel. Areas Commun. 25(4), 819–830 (2007). doi:10.1109/JSAC.2007.070517

    Article  Google Scholar 

  25. Mack, J., Poulsen, H., Burmeister, E., Bowers, J., Blumenthal, D.: A 40 gb/s asynchronous optical packet buffer based on an SOA gate matrix for contention resolution. In: Optical Fiber Communication and the National Fiber Optic Engineers Conference, : OFC/NFOEC 2007, pp. 1–3. Conference on, IEEE (2007)

  26. Papoulis, A., Pillai, S.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, NY (2002)

    Google Scholar 

  27. Rogiest, W., Laevens, K., Fiems, D., Bruneel, H.: A performance model for an asynchronous optical buffer. Performance Evaluation 62(1–4):313–330, doi:10.1016/j.peva.2005.07.010, performance 2005

  28. Tian, C., Wu, C., Li, Z., Guo, N.: Dual-wavelength packets buffering in dual-loop optical buffer. IEEE Photonics Technol. Lett. 20(8), 578–580 (2008)

    Article  Google Scholar 

  29. Uskov, A., Sedgwick, F., Chang-Hasnain, C.: Delay limit of slow light in semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 18(6), 731–733 (2006). doi:10.1109/LPT.2006.871147

    Article  Google Scholar 

  30. Vanderbauwhede, W., Harle, D.: Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node. J. Lightwave Technol. 23(7), 2215 (2005)

    Article  Google Scholar 

  31. Vanderbauwhede, W., Novella, H.: A multiexit recirculating optical packet buffer. IEEE Photonics Technol. Lett. 17(8), 1749–1751 (2005)

    Article  Google Scholar 

  32. Wang, X., Jiang, X., Pattavina, A., Horiguchi, S.: A construction of 1-to-2 shared optical buffer queue with switched delay lines. IEEE Trans. Commun. 57(12), 3712–3723 (2009)

    Article  Google Scholar 

  33. Yamazaki, E., Inuzuka, F., Yonenaga, K., Takada, A., Koga, M.: Compensation of interchannel crosstalk induced by optical fiber nonlinearity in carrier phase-locked wdm system. IEEE Photonics Technol. Lett. 19(1), 9–11 (2007). doi:10.1109/LPT.2006.888032

    Article  Google Scholar 

  34. Yao, S., Mukherjee, B., Dixit, S.: Advances in photonic packet switching: an overview. IEEE Commun Mag. 38(2), 84–94 (2000). doi:10.1109/35.819900

    Article  Google Scholar 

  35. Yiannopoulos, K., Vlachos, K.G., Varvarigos, E.: Multiple-input-buffer and shared-buffer architectures for optical packet- and burst-switching networks. IEEE/OSA J. Lightwave Technol. 25(6), 1379–1389 (2007). doi:10.1109/JLT.2007.896804

    Article  Google Scholar 

  36. Zhang, T., Lu, K., Jue, J.R.: Shared fiber delay line buffers in asynchronous optical packet switches. IEEE J. Sel. Areas Commun. 24(4), 118–127 (2006). doi:10.1109/JSAC.2006.1613777

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Hung Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, KH., Lin, W. An analytical model for all-optical packet switching networks with finite FDL buffers. Photon Netw Commun 25, 144–155 (2013). https://doi.org/10.1007/s11107-013-0398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-013-0398-y

Keywords

Navigation