Skip to main content
Log in

Reliability considerations of the emerging PON-based 4G mobile backhaul RAN architecture

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

This work proposes a fully distributed protection mechanism for a ring-based wavelength-division-multiplexed passive optical network (PON) broadband access architecture that can be utilized as an all-packet-based converged fixed-mobile access networking transport infrastructure for backhauling mobile traffic. Such an architecture will enable the true integration of PON-based and fourth-generation mobile broadband access technologies into the envisioned fixed-mobile platform. Specifically, this paper proposes two different fault detection and recovery schemes, namely, fully distributed and hybrid (distributed/centralized). In this ring-based architecture, each optical network unit can independently detect, manage, and recover most of the networking failure scenarios. The proposed protection schemes are capable of protecting against both node and distribution/trunk fiber failures and enable the recovery of all network traffic including upstream, downstream, and LAN data. In addition, these schemes can also protect against any combination of concurrent double failures including trunk/distribution fiber breaks and node failures. The hybrid architecture delivers these efficient resilience capabilities and incurs almost no additional power loss compared to that of the normal working architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. UMTS Evolution.: From 3GPP Release 7 to Release 8, HSPA and SAE/LTE. www.3gamericans.org (2008)

  2. 3GPP.: TS 23.401: GPRS enhancements for E-UTRAN access (2007)

  3. Ekstrom, H.: QoS control in the 3GPP evolved packet system. IEEE Commun. Mag. 47(2), 76–83 (2009)

    Article  Google Scholar 

  4. IEEE Standard 802.6e-2005.: Air interface for fixed and mobile broadband wireless access systems (2006)

  5. IEEE Communications Magazine, “Special issue on LTE-Advanced”, 50(2), (2012)

  6. Shumate, P.W.: Fiber-to-the-home: 1997–2007. IEEE/OSA J. Lightwave Technol. 26(9), 1093–1103 (2008)

    Article  Google Scholar 

  7. Lee, C.-H., et al.: Fiber to the home using a PON infrastructure. IEEE/OSA J. Lightwave Technol. 24(12), 4568–4583 (2006)

    Article  Google Scholar 

  8. Kazovsky, L.G., et al.: Next-generation optical access networks. IEEE/OSA J. Lightwave Technol. 25(11), 3428–3442 (2007)

    Article  Google Scholar 

  9. Maier, M., et al.: STARGATE: the next evolutionary step toward unleashing the potential of WDM EPONs. IEEE Commun. Mag. 45(5), 50–56 (2007)

    Article  Google Scholar 

  10. Zaidi, S. et al.: A simple and cost-effective EPON-based 4G mobile backhaul RAN architecture. In: Proc. IEEE Global Communications Conference (Globecom), (2012)

  11. Madamopoulos, N., et al.: A fully distributed 10G-EPON-based converged fixed–mobile networking transport infrastructure for next generation broadband access. IEEE/OSA J. Opt. Commun. Netw. 4(5), 366–377 (2012)

    Article  Google Scholar 

  12. Ali, M.A., et al.: On the vision of complete fixed–mobile convergence. IEEE/OSA J. Lightwave Technol. 28(16), 2343–2357 (2010)

    Article  Google Scholar 

  13. Erkan, H., et al.: Dynamic and fair resource allocation in a distributed ring-based WDM-PON architectures. Comput. Commun. J. 36(14), 1559–1569 (2013)

    Article  Google Scholar 

  14. Ranaweera, C., et al.: Design and optimization of fiber optic small-cell backhaul based on an existing fiber-to-the-node residential access network. IEEE Commun. Mag. 51(9), 62–69 (2013)

    Article  Google Scholar 

  15. ITU-T recommendation G.983.1.: Broadband optical access systems based on passive optical networks (PON), (1998)

  16. Chan, T.J., et al.: A self-protected architecture for wavelength-division-multiplexed passive optical networks. IEEE Photonics Technol. Lett. 15(11), 1660–1662 (2003)

    Article  Google Scholar 

  17. Wang, Z.X., et al.: A novel centrally controlled protection scheme for traffic restoration in WDM passive optical networks. IEEE Photonics Technol. Lett. 17(3), 717–719 (2005)

    Article  Google Scholar 

  18. Lee, C.M. et al.: A group protection architecture (GPA) for traffic restoration in multi-wavelength passive optical network. In:, Proc. European Conference on Optical Communications (ECOC), Rimini, September 2003

  19. Sun, X.F., et al.: A survivable WDM-PON architecture with centralized alternate-path protection switching for traffic restoration. IEEE Photonics Technol. Lett. 18(4), 631–633 (2006)

    Article  Google Scholar 

  20. Son, E.S. et al.: Survivable network architectures for WDM PON. In: Proc. IEEE/OSA Proc. Optical Fiber Communication Conference (OFC), Anaheim (2005)

  21. Nakamura, H., et al.: Reliable wide-area wavelength division multiplexing passive optical network accommodating gigabit ethernet and 10-Gb ethernet services. IEEE/OSA J. Lightwave Technol. 24(5), 2045–2051 (2006)

    Article  Google Scholar 

  22. Lee, K., et al.: A self-restorable architecture for bidirectional wavelength-division-multiplexed passive optical network with colorless ONUs. OSA Opt. Express 15, 4863–4868 (2007)

    Article  Google Scholar 

  23. Lee, K., et al.: Reliable wavelength-division-multiplexed passive optical network using novel protection scheme. IEEE Photonics Technol. Lett. 20(9), 679–681 (2008)

    Article  Google Scholar 

  24. Zhu, M. et al.: A centrally-controlled self-protected WDM-PON using \(N \times N\) arrayed waveguide gratings. In: Proc. 10th International Conference on Optical Communications and Networks (ICOCN), (2011)

  25. Zhu, M., et al.: A new cross-protection dual-WDM-PON architecture with carrier-reuse colorless ONUs. Opt. Commun. 285(15), 3254–3258 (2012)

    Article  Google Scholar 

  26. Yeh, C., et al.: Fiber-fault protection WDM-PON using new apparatus in optical networking unit. Opt. Commun. 285(7), 1803–1806 (2012)

    Article  Google Scholar 

  27. Zhu, Z. et al.: Survivable wavelength-division-multiplexing passive optical network system with centralized protection routing scheme and efficient wavelength utilization. Opt. Eng. 52(9), (2013). doi:10.1117/1.OE.52.9.096109

  28. Feng, H., Ge, J., Xiao, S., Fok, M.P.: Suppression of Rayleigh backscattering noise using cascaded-SOA and microwave photonic filter for 10 Gb/s loop-back WDM-PON. OSA Opt. Express 22(10), 11770–11777 (2014)

  29. Yousaf, K., Yu, C.-X., Xin, X.-J., Amjad, A., Aftab, H., Liu, B.: Rayleigh backscattering minimization in single fiber color-less WDM-PON using intensity remodulation technique. Optoelectron. Lett. 8(5), 1–4 (2012)

    Google Scholar 

  30. Kramer, G.: Ethernet Passive Optical Networks. McGraw Hill, New York (2005)

    Google Scholar 

  31. Kramer, G., et al.: Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network. Photonic Netw. Commun. 4(1), 89–107 (2002)

    Article  Google Scholar 

  32. Sherif, S., et al.: A novel distributed ethernet-based PON access architecture for provisioning differentiated QoS. IEEE/OSA J. Lightwave Technol. 22(11), 2483–2497 (2004)

    Article  Google Scholar 

  33. Delowar, A., et al.: Ring-based local access PON architecture for supporting private networking capability. OSA J. Opt. Netw. 5(1), 26–39 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ellinas.

Additional information

This work was partially supported by the Cyprus Research Promotion Foundation’s Framework Programme for Research, Technological Development and Innovation 2008 (DESMI 2008), co-funded by the Republic of Cyprus and the European Regional Development Fund, and specifically under Grant ANAVATHMISI/PAGIO/0308/30, and by the National Science Foundation, USA under Grant ECCS-0901563.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erkan, H., Ellinas, G., Hadjiantonis, A. et al. Reliability considerations of the emerging PON-based 4G mobile backhaul RAN architecture. Photon Netw Commun 29, 40–56 (2015). https://doi.org/10.1007/s11107-014-0459-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-014-0459-x

Keywords

Navigation