Skip to main content
Log in

Weighted average indoor positioning algorithm that uses LEDs and image sensors

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We propose a weighted average indoor positioning algorithm, which is an improved version of the M.S. Rahman’s algorithm, for the calculation of unknown positions in a visible light communication system consisting of light-emitting diodes (LEDs) and image sensors. The algorithm considers the LED illumination intensity as a key factor, and the generalized Lambert illumination model is adopted to estimate the LED illumination intensity of each pixel in the images obtained at the sensors. The LED illumination intensity is normalized as a weighting factor, following the determination of the center position of the LED image. Simulations showed that the average signal-to-noise ratio in our positioning system was 19.3 dB. The simulation results also showed that the root mean square positioning error was reduced from 6.6 to 3.7 cm when the resolution of the image sensor was 3000 pixels per cm, which is comparable to the error in the widely used M.S. Rahman’s algorithm. The distance between the centers of the lenses and the focal lengths of the lenses also affects the positioning error. After the simulations, the relationship between the positioning error and the lens distance or focal length is deduced. It is observed that this algorithm has lesser positioning errors than the M.S. Rahman’s algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vucic, J., Kottke, C., Nerreter, S., et al.: 513-Mbit/s visible light communications link based on DMT-modulation of a white LED. J. Lightw. Technol. 28(24), 3512–3518 (2010)

    Google Scholar 

  2. Tanaka, Y., Haruyama, S., Nakagawa, M.: Wireless optical transmissions with white colored LED for wireless home links. 11th IEEE International Symposium on Person Indoor Mobile Radio Commun, vol. 2, pp. 1325–1329 (2000)

  3. Fan, K., Komine, T., Tanaka, Y., Nakagawa, M.: The effect of reflection on indoor visible-light communication system utilizing white LEDs. In: Proceedings of 5th International Symposium on Wireless Personal Multimedia Communication, WPMC, vol. 2, pp. 611–615 (2002)

  4. Thai, P.: Real-time 138-kb/s transmission using OLED with 7-kHz modulation bandwidth. IEEE Photon. Technol. Lett. 27(24), 2571–2571 (2015)

    Article  Google Scholar 

  5. McKendry, J.J.D., Massoubre, D., Zhang, S., et al.: Visible-light communications using a CMOS-controlled micro-light-emitting-diode array. J. Lightw. Technol. 30(1), 61–67 (2012)

    Article  Google Scholar 

  6. Tsonev, D., Chun, H., Rajbhandari, S., et al.: A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride \(\mu \)LED. IEEE Photon. Technol. Lett. 26(7), 637–640 (2014)

    Article  Google Scholar 

  7. Dambul, K.D., O’Brien, D.C., Faulkner, G.: Indoor optical wireless MIMO system with an imaging receiver. IEEE Photon. Technol. Lett. 23(2), 97–99 (2011)

    Article  Google Scholar 

  8. Cossu, G., Khalid, A.M., Choudhury, P., et al.: 3.4-Gbit/s visible optical wireless transmission based on RGB LED. Opt. Expr. 20(26), 501–506 (2012)

    Article  Google Scholar 

  9. Tsonev, D., Videv, S., Haas, H.: Towards a 100Gb/s visible light wireless access network. Opt. Expr. 23(2), 1627–1637 (2015)

    Article  Google Scholar 

  10. Wang, Zixiong, Changyuan, Yu., Zhong, Wen-De, et al.: Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems. Opt. Expr. 20(4), 4564–4573 (2012)

    Article  Google Scholar 

  11. Rajagopal, S., Roberts, R.D., Lim, S.K.: IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 50(3), 72–82 (2012)

    Article  Google Scholar 

  12. Rahman, M. S., Haque, Md. M., Kim, K.-D.: High precision indoor positioning using lighting LED and image sensor. In: 14th International Conference on Computing Information Technology, ICCIT, pp. 309–314 (2011)

  13. Yoshino, M., Haruyama, S., Nakagawa, M.: High accuracy positioning system using visible LED lights and image sensor, pp. 439–442. IEEE Radio Wireless Symposium, RWS (2008)

  14. Wang, T.Q., Sekercioglu, Y.A., Neild, A., Armstrong, J.: Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems. J. Lightw. Technol. 31(20), 3302–3308 (2013)

    Article  Google Scholar 

  15. Sun, X., Duan, J., Zou, Y., Shi, A.: Impact of multipath effects on theoretical accuracy of TOA-based indoor VLC positioning system. Photon. Res. 3(6), 296–299 (2015)

    Article  Google Scholar 

  16. Cho, S.H., Yeo, S.R., Choi , H.H et al.: A design of synchronization method for TDOA-based positioning system. IEEE International Conference on Control, Automation and Systems, pp. 1373–1375 (2012)

  17. Jung, S.Y., Hann, S., Park, C.S.: TDOA-based optical wireless indoor localization using LED ceiling lamps. IEEE Trans. Consum. Electron 57(4), 1592–1597 (2011)

    Article  Google Scholar 

  18. Yang, S.H., Kim, H.S., Son, Y.H., Han, S.K.: Three-dimensional visible light indoor localization using AOA and RSS with multiple optical receivers. J. Lightw. Technol. 321(4), 2480–2485 (2014)

    Article  Google Scholar 

  19. Kim, Y., Hwang, J., Lee, J., Yoo, M.: Position estimation algorithm based on tracking of received light intensity for indoor visible light communication systems. ICUFN—3rd International Conference on Ubiquitous Future Networks, pp. 131–134 (2011)

  20. Jung, S.Y., Hann, S., Park, S., Park, C.S.: Optical wireless indoor positioning system using light emitting diode ceiling lights. Microw. Opt. Technol. Lett. 54(7), 1622–1626 (2012)

    Article  Google Scholar 

  21. Kim, H.S., Kim, D.R., Yang, S.H., et al.: An indoor visible light communication positioning system using a RF carrier allocation technique. J. Lightw. Technol. 31(1), 134–144 (2013)

    Article  Google Scholar 

  22. Horikawa, S., Komine, T., Haruyama, S., Nakagawa, M.: Pervasive visible light positioning system using white LED lighting. IEICE Tech. Rep. 103(721), 93–99 (2004)

    Google Scholar 

  23. Rahman, M.S., Kim, K.D.: Indoor location estimation using visible light communication and image sensors. Int. J. Smart Home 7(1), 99–113 (2013)

    Google Scholar 

  24. Moon, M.G., Choi, S.I.: Indoor position estimation using image sensor based on VLC. In: International Conference on Advanced Technology Communications, pp. 11–14 (2014)

  25. Hossen, M.S., Park, Y., Kim, K.D.: Performance improvement of indoor positioning using light-emitting diodes and an image sensor for light-emitting diode communication. Opt. Eng. 54(4), 045101 (2015)

    Article  Google Scholar 

  26. Cheng, W., Tan, K., Omwando, V., Zhu, J., Mohapatra, P.: RSS-ratio for enhancing performance of RSS-based applications. In: Proceedings of IEEE INFOCOM, pp. 3075–3083 (2013)

  27. Yasir, M., Ho, S.W., Vellambi, B.N.: Indoor positioning system using visible light and accelerometer. J. Lightw. Technol. 32(19), 3306–3316 (2014)

    Article  Google Scholar 

  28. Svilainis, L., Dumbrava, V.: LED far field pattern approximation performance study. In: Proceedings of International Conference on Information and Technology Interfaces, pp. 645–649 (2007)

  29. Moreno, I., Contreras, U.: Color distribution from multicolor LED arrays. Opt. Expr. 15(6), 3607–3618 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the High-end Foreign Expert Project of China (GDT20153300054), Natural Science Foundation of China (61172081), and Natural Science Foundation of Zhejiang Province (LZ13F010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglei Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, M., Zhu, W., Le, Z. et al. Weighted average indoor positioning algorithm that uses LEDs and image sensors. Photon Netw Commun 34, 202–212 (2017). https://doi.org/10.1007/s11107-016-0682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-016-0682-8

Keywords

Navigation