Skip to main content
Log in

All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, we employed multilayer ring resonators in a silicon rod base structure to realize 6-channel and 8-channel demultiplexers based on two-dimensional photonic crystals. Both the main rings and basic structures are composed of silicon rods, and the interior rings of the multilayer rings are composed of carbon. Employing silicon and carbon rods of different radii in multilayer ring resonators enhanced the coupling efficiency between the rings and waveguides. The average quality factor and power transmission efficiency were 4320 and 93%, respectively. Crosstalk values from \(-11\) to −46 dB in conjunction with the mentioned characteristics suggest the use of the device for optical communication applications. The compact size of the proposed structure and the materials used make the proposed demultiplexer suitable for optical integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultra compact wavelength division demultiplexer based on photonic band gap. Optics Commun. 285, 274–276 (2012)

    Article  Google Scholar 

  2. Bernier, D., Le Roux, X., Lupu, A., Marris-Morini, D., Vivien, L., Cassan, E.: Compact low crosstalk CWDM demultiplexer using photonic crystal super prism. Opt. Exp. 42, 17214–17260 (2008)

    Google Scholar 

  3. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  4. Soukoulis, C.M.: Photonic Band Gap Materials. Kliwer Academic Publisher, New York (1996)

    Book  MATH  Google Scholar 

  5. D’Orazio, A., De Sario, M., Petruzzelli, V., Prudenzano, F.: Photonic band gap filter for wavelength division multiplexer. Opt. Exp. 11, 230–232 (2003)

    Article  Google Scholar 

  6. Yablonovitch, E.: Inhibited spontaneous meission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059 (1987)

    Article  Google Scholar 

  7. D’Aguanno, G., Mattiucci, N., Bloemer, M.J., De Ceglia, D., Vincenti, M.A., Alu’, A.: Transmission resonances in plasmonic metallic gratings. J. Opt. Soc. Am. B 28, 253–264 (2011)

    Article  Google Scholar 

  8. Tang, B., Dai, L., Jiang, C.: Transmission enhancement of slow light by a subwavelength plasmon-dielectric system. J. Opt. Soc. Am. B 27, 2433–2437 (2010)

    Article  Google Scholar 

  9. Wang, B., Wang, G.P.: Plasmon Bragg reflectors and nanocavities on flat metallic surfaces. App. Phys. Lett. 87, 013107 (2005)

    Article  Google Scholar 

  10. Hanand, Z., Forsberg, E.: Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photonics Technol. Lett. 19, 91–93 (2007)

    Article  Google Scholar 

  11. Liu, Y., Kim, J.: Plasmonic modulation and switching via combined utilization of Young interference and metal-insulator- metal waveguide coupling. J. Opt. Soc. Am. B 28, 2712–2717 (2011)

    Article  Google Scholar 

  12. Tai, C., Chang, S.H., Chiu, T.C.: Numerical optimization of wide angle, broadband operational polarization beam splitter based on aniostropically coupled surface-plasmon-polariton waves. J. Opt. Soc. Am. B 25, 1387–1392 (2008)

    Article  Google Scholar 

  13. Kim, H., Park, I., Park, B.O.S., Lee, E., Lee, S.: Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing. Opt. Exp. 12, 5625–5648 (2004)

    Article  Google Scholar 

  14. Liu, V., Jiao, Y., Miller, D.A.B., Fan, S.: Design methodology for compact photonic-crystal-based wavelength division multiplexers. Opt. Lett. 36, 591–594 (2011)

    Article  Google Scholar 

  15. Chien, F.S., Hsu, Y., Hsieh, W., Cheng, S.: Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides. Opt. Exp. 12, 1119–1124 (2004)

    Article  Google Scholar 

  16. Boumami, S., Naoum, R.: New version of seven wavelengths demultiplexer based on the microcavities in a two-dimensional photonic crystal. Optik 124, 2373 (2013)

    Article  Google Scholar 

  17. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E 50, 97 (2013)

    Article  Google Scholar 

  18. Reza Rakhshani, M., Ali Mansouri-Birjandi, M.: Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low-Dimens. Syst. Nanostruct. 50, 97–101 (2013)

    Article  Google Scholar 

  19. Djavid, M., Monifi, F., Ghaffari, A., Abrishamian, M.S.: Heterostructure wavelength division demultiplexers using photonic crystal ring resonators. Optics Commun. 281, 4028–4032 (2008)

    Article  Google Scholar 

  20. Rostami, A., Nazari, F., AlipourBanaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14 (2010)

    Article  Google Scholar 

  21. Alipour-Banaei, H., Mehdizadeh, F., Hassangholizadeh-Kashtiban, M.: A novel proposal for all optical PhCs based demultiplexers suitable for DWDM applications. Opt. Quant. Electron. 45, 1063–1075 (2013)

    Article  Google Scholar 

  22. Mehdizadeh, F., Soroosh, M.: A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities. Photonic Netw. Commun. 31(1), 65–70 (2016)

  23. Balaji, V.R., Murugan, M., Robinson, S.: Optimization of DWDM demultiplexer using regression analysis. J. Nanomater. 2016, 9850457 (2016). doi:10.1155/2016/9850457

    Article  Google Scholar 

  24. Venkatachalam, K., Siram Kumar, D., Robinson, S.: Investigation on 2D photonic crystal-based eight channel wavelength-division demultiplexer. Photon. Netw. Commun (2016)

  25. Yariv, A.: Quantum Electronics, 3rd edn. Wiley, New York (1989)

    Google Scholar 

  26. Bogaerts, W., Heyn, P.D., Vaerenbergh, T.V., DeVos, K.S., Selvaraja, K., Claes, T., Dumon, P., Bienstman, P., Van Thourhout, D., Baets, R.: Silicon microring resonators. Laser Photonics Rev. 6, 47–73 (2012)

    Article  Google Scholar 

  27. Johnson, S.G., Joannopolous, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173 (2001)

    Article  Google Scholar 

  28. Green, M.A., Keevers, M.J.: Optical properties of intrinsic silicon at 300 K. Prog. Photovolt. 3, 189–192 (1995)

    Article  Google Scholar 

  29. Phillip, H.R., Taft, E.A.: Kramers-Kronig analysis of reflectance data for diamond. Phys. Rev. 136, A1445–A1448 (1964)

    Article  Google Scholar 

  30. Talebi, R., Abbasian, K., Rostami, A.: Analytical modeling of quality factor for shell type microsphere resonators. Prog. Electromagn. Res. B 30, 293–311 (2011)

    Article  Google Scholar 

  31. Qiu, M.: Effective index method for heterostructure-slab-wave-guide-based two-dimensional photonic crystals. App. Phy. Lett. 81, 1163–1165 (2002)

    Article  Google Scholar 

  32. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Exp. 8, 173–190 (2001)

    Article  Google Scholar 

  33. Zhang, X., Liao, Q., Yu, T., Liu, N., Huang, Y.: Novel ultra compact wavelength division demultiplexer based on photonic band gap. Optics Commun. 285, 274–276 (2012)

    Article  Google Scholar 

  34. Chen, B., Liu, C., Liu, G.: A compact wavelength division de-multiplexer based on directional coupling of one-dimensional photonic crystal waveguides. Optics Commun. 285, 5100–5106 (2012)

    Article  Google Scholar 

  35. Qing-Hua, L., Hong-Ming, F., Shu-Wen, C., Tong-Biao, W., Tian-Bao Y., Yong-Zhen, H.: The design of large separating angle ultra-compact wavelength division demultiplexer based on photonic crystal ring resonators. Optics Commun. 331, 160–164 (2014)

  36. Pozar, D.M.: Microwave Engineering, 4th edn. Wiley, New York (2011)

    Google Scholar 

  37. Collin, R.E.: Foundations For Microwave Engineering, 2nd edn. Wiley-IEEE Press, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Soroosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebzadeh, R., Soroosh, M., Kavian, Y.S. et al. All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photon Netw Commun 34, 248–257 (2017). https://doi.org/10.1007/s11107-017-0688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0688-x

Keywords

Navigation