Skip to main content
Log in

Two-dimensional photonic crystal ring resonator-based channel drop filter for CWDM application

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, a channel drop filter based on two-dimensional photonic crystal ring resonator (PCRR) is proposed. The proposed structure consists of bus waveguide, dropping waveguide and a ring resonator. We have focused on improving the dropping efficiency and quality factor of the structure by applying different optimization techniques. Optimized channel drop filter using PCRR is designed, and it is extended to drop three different channels by changing the inner rods radius in each ring resonator that act as a demultiplexer. As designed structure drops three different channels such as 1524, 1544 and 1565 nm, the band gap for the structure is calculated and observed by plane-wave expansion method. The normalized transmission spectra and resonance wavelengths for different radius are obtained using two-dimensional finite-difference time-domain method. The proposed PCRR-based demultiplexer has the channel spacing of about 20 nm which fulfils the requirements of coarse wavelength-division multiplexing systems. The size of the demultiplexer is small; hence, it can be utilized for photonic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Joannopoulos, J.D., Meade, R.D., Winn, I.N.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  2. Alipour-Banaei, H., Mehdizadeh, F., Serajmohammadi, S.: A novel 4-channel demultiplexer based on photonic crystal ring resonators. Opt.-Int. J. Light Electron Opt. 124(23), 5964–5967 (2013)

    Article  MATH  Google Scholar 

  3. Rakhshani, M.R., Mansouri-Birjandi, M.A.: Design and simulation of four-channel wavelength demutiplexer based on photonic crystal circular ring resonators for optical communications. J. Opt. Commun. 35(1), 9–15 (2014)

    Article  Google Scholar 

  4. Fasihi, K., Mohammadnejad, S.: Highly efficient channel-drop filter with a coupled cavity- based wavelength-selective reflection feedback. Opt. Express 17, 8983 (2009). https://doi.org/10.1364/OE.17.008983

    Article  Google Scholar 

  5. Robinson, S., Nakkeeran, R.: Investigation on parameters affecting the performance of two dimensional photonic crystal based bandpass filter. Opt. Quant. Electron. 43, 69 (2012). https://doi.org/10.1007/s11082-011-9504-5

    Article  Google Scholar 

  6. Narmadhadevi, P., Shanmuga Sundar, D., Malathi, L.: Performance analysis of different micro ring resonators based on optical delay lines. IJCA 67(13), 0975–8887 (2013)

    Article  Google Scholar 

  7. Sharma, P., Sharan, P.: Photonic crystal based ring resonator sensor for detection of glucose concentration for biomedical applications. J. IJETAE 4(3), 2250–2459 (2014)

    Google Scholar 

  8. Ghorbanpour, H., Makouei, S.: 2-channel all optical demultiplexer based on photonic crystal ring resonator. Front. Optoelectron.https://doi.org/10.1007/s12200-013-0322-1

  9. Taalbi, A., Bassou, G., Mahmoud, M.Y.: New design of channel drop filters based on photonic crystal ring resonators. Optik 124, 824–827 (2012)

    Article  Google Scholar 

  10. Li, L., Liu, G.Q.: Photonic crystal ring resonator channel drop filter. Optik 124, 2966–2968 (2012)

    Article  Google Scholar 

  11. Mahmoud, M.Y., Bassou, G., Taalbi, A., Chekroun, Z.M.: Optical channel drop filters based on photonic crystal ring resonators. Opt. Commun. 285, 368–372 (2012)

    Article  Google Scholar 

  12. Niemi, T., Frandsen, L.H., Hede, K.K., Harpøth, A., Borel, P.I., Kristensen, M.: Wavelength-division demultiplexing using photonic crystal waveguides. IEEE Photonics Technol. Lett. 18, 226–228 (2006)

    Article  Google Scholar 

  13. Chung, L.W., Lee, S.L.: Photonic crystal-based dual-band demultiplexers on silicon materials. Opt. Quant. Electron. 39, 677–686 (2007)

    Article  Google Scholar 

  14. Sinha, R.K., Rawal, S.: Modeling and design of 2D photonic crystal based Y type dual band wavelength demultiplexer. Opt. Quant. Electron. 40, 603–613 (2008)

    Article  Google Scholar 

  15. Rawal, S., Sinha, R.K.: Design, analysis and optimization of silicon-on-insulator photonic crystal dual band wavelength demultiplexer. Opt. Commun. 282, 3889–3894 (2009)

    Article  Google Scholar 

  16. Tekeste, M.Y., Yarrison-Rice, J.M.: High efficiency photonic crystal based wavelength demultiplexer. Opt. Express 14, 7931–7942 (2006)

    Article  Google Scholar 

  17. Rostami, A., Habibiyan, H.R., Nazari, F., Bahrami, A., Alipour, H.: A novel proposal for DWDM demultiplexer design using resonance cavity in photonic crystal structure. Int. Asia Commun. Photonics (ACP) 7630, 1–9 (2009)

    Google Scholar 

  18. Rostami, A., Nazari, F., Banaei, H., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonic Nanostruct. Fundam. Appl. 8, 14–22 (2010)

    Article  Google Scholar 

  19. Rostami, A., Banaei, H.A., Nazari, F., Bahrami, A.: An ultra-compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik 122, 1481–1485 (2011)

    Article  Google Scholar 

  20. Alipour-Banaei, H., Mehdizadeh, F.: Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optic 124, 2639–2644 (2012)

    Google Scholar 

  21. Johnson, S.G., Joannopoulos, J.D.: Block Iterative frequency domain methods for Maxwell’s equation in a plane wave basis. Opt. Express 8(3), 173–190 (2000)

    Article  Google Scholar 

  22. Ren, H., Jiang, C., Weisheng, H., Gao, M., Wang, J.: Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity. Opt. Express 14(6), 2446–2458 (2006)

    Article  Google Scholar 

  23. Kim, S., Park, I., Lim, H.: Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback. Opt. Express 12(22), 5518–5525 (2004)

    Article  Google Scholar 

  24. Zimmermann, J., Kamp, M., Forchel, A., Marz, R.: Photonic crystal waveguide directional couplers as wavelength selective optical filters. Optics Commun. 230, 387–392 (2004)

    Article  Google Scholar 

  25. Moghaddam, M.K., Attari, A.R., Mirsalehi, M.M.: Improved photonic crystal directional coupler with short length. Photonics Nanostruct. Fundam. Appl. 8, 47–53 (2010)

    Article  Google Scholar 

  26. Kim, S.H., Ryu, H.Y., Park, H.G., Kim, G.H., Choi, Y.S., Lee, Y.H., Kim, J.S.: Two-dimensional photonic crystal hexagonal waveguide ring laser. Appl. Phys. Lett. 81(14), 2499–2501 (2002)

    Article  Google Scholar 

  27. Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15(4), 1823–1831 (2007)

    Article  Google Scholar 

  28. Hsiao, F-L., Lee, C.: A nano ring resonator based on 2D hexagonal lattice photonic crystals. In: International Conference on Optical MEMS and Nanophotonics, pp. 107–108 (2009)

  29. Robinson, S., Nakkeeran, R.: Two dimensional photonic crystal ring resonator based add drop filter for CWDM systems. Optik 124, 3430–3435 (2013)

    Article  Google Scholar 

  30. Mahmoud, M.Y., Bassou, G., de Fornel, F., Taalbi, A.: Channel drop filter for CWDM systems. Opt. Commun. 306, 179–184 (2013)

    Article  Google Scholar 

  31. Banaei, H.A., Mehdizadeh, F., Kashtiban, M.H.: A new proposal for PCRR-based channel drop filter using elliptical rings. Phys. E 56, 211–215 (2014)

    Article  Google Scholar 

  32. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Trans. Antenna Propag. 14(3), 302–307 (2003)

    MATH  Google Scholar 

  33. Noda, S., Chutinan, A., Imada, M.: Trapping and emission of photons by a single defect in a photonic bandgap structure. Nature 407, 608 (2000)

    Article  Google Scholar 

  34. Sharma, R., Chhipa, M.K., Dusad, L.K.: Investigation of channel drop filter based on two dimensional photonic crystal structure. In: Proceedings of the International Conference on Recent Cognizance in Wireless Communication and Image Processing, pp. 193–199, Springer, India (2016)

  35. Alipour-Banaei, H., Jahanara, M., Mehdizadeh, F.: T shaped channel drop filter based on photonic crystal ring resonator. Optik 125(18), 5348–5351 (2014)

    Article  Google Scholar 

  36. Tavousi, A., Mansouri-Birjandi, M.A.: Performance evaluation of photonic crystal ring resonators based optical channel add drop filters with the aid of whispering gallery modes and their Q-factor. Opt. Quant. Electron. 47(7), 1613–1625 (2015)

    Article  Google Scholar 

  37. Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Express 15, 1823 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Divya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divya, J., Selvendran, S. & Sivanantha Raja, A. Two-dimensional photonic crystal ring resonator-based channel drop filter for CWDM application. Photon Netw Commun 35, 353–363 (2018). https://doi.org/10.1007/s11107-017-0749-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-017-0749-1

Keywords

Navigation