Skip to main content
Log in

Performance analysis of WDM-FSO system under adverse weather conditions

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Free-space optics (FSO) is a data relaying technology, which requires a direct line of sight between the transmitter and the receiver units for reliable transmission. FSO communication links have many merits such as high modulation bandwidth, high data transmission rates, low cost, and easy installation process. The performance of FSO link is affected by certain external parameters such as absorption, scintillation, and atmospheric attenuation due to different weather conditions. This paper reports the designing and simulative comparison of two wavelength division multiplexing-based FSO links under rain and snow weather conditions. The proposed system reports successful transmission of \(32\times 10\) Gbps of data along a link distance of 16.5 and 1.07 km under rain and snow weather conditions, respectively, with acceptable performance levels (\(Q\sim \) 6 dB and \(\hbox {BER} \le 10^{-9}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16(4), 2231–2258 (2014)

    Article  Google Scholar 

  2. Mahdy, A., Deogun, J.S.: Wireless optical communications: a survey. In: Proceedings of IEEE Wireless Communications and Networking Conference, vol. 4, pp. 2399–2404 (2004)

  3. Nykolak, G., Szajowski, P.F., Tourgee, G., Presby, H.: 2.5 Gbit/s free space optical link over 4.4 km. Electron. Lett. 35(7), 578–579 (1999)

    Article  Google Scholar 

  4. Al-Gailani, S.A., Mohammad, A.B., Shaddad, R.Q.: Evaluation of a 1 Gb/s free space optic system in typical Malaysian weather. In: Proceedings of IEEE 3rd International Conference on Photonics, pp. 121–124 (2012)

  5. Ramezani, A., Noroozi, M.R., Aghababaee, M.: Analyzing free space optical communication performance. Int. J. Eng. Adv. Technol. 4(1), 46–51 (2014)

    Google Scholar 

  6. Singh, J., Kumar, N.: Performance analysis of different modulation format on free space optical communication system. Opt. Int. J. Light Electron Opt. 124(20), 4651–4654 (2013)

    Article  Google Scholar 

  7. Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the performance of free space optics. J. Opt. Netw. 2(6), 178–200 (2003)

    Google Scholar 

  8. García-Zambrana, A., Castillo-Vázquez, C., Castillo-Vázquez, B.: Rate-Adaptive Free-Space Optical Links over Atmospheric Turbulence and Misalignment Fading Channels, pp. 321–340. Intech Open Science, London (2012). (Book Chapter 13)

    Google Scholar 

  9. Matsumoto, M.: Next generation free-space optical system by system design optimization and performance enhancement. In: Proceedings of Progress in Electromagnetics Research Symposium, pp. 501–506 (2012)

  10. ITU-T Recommendation G 694.2, Spectral Grids for WDM Applications: CWDM Wavelength Grid. https://www.itu.int/rec/T-REC-G.694.2/en (2003)

  11. Vigneshwaran, S., Muthumani, I., Sivananantha, R.: Investigations on free space optics communication system. In: IEEE International Conference on Information Communication and Embedded System (ICICES-2013), 21–22, Chennai, India, pp. 819–824 (2013)

  12. Kumar, N.: Enhanced performance analysis of inter-satellite optical-wireless communication (IsOWC) system. Optik 125(8), 1045–949 (2014)

    Article  Google Scholar 

  13. Aladeloba, A.O., Woolfson, M.S., Phillips, A.J.: WDM FSO network with turbulence attenuated interchannel crosstalk. J. Opt. Commun. Netw. 5(6), 641–651 (2013)

    Article  Google Scholar 

  14. Singh, M.: Mitigating the effects of fog attenuation in FSO communication link using multiple transceivers and EDFA. J. Opt. Commun. ISSN (Online) 2191-6322, ISSN (Print) 0173-4911. https://doi.org/10.1515/joc-2016-0061 (2016)

  15. Al-Gailani, S.A., Mohammad, A.B., Shaddad, R.Q.: Scalable Hybri WDM/multi-beam free space optical network in tropical weather. In: 1st International Conference Recent Trends in Information and Communication Technologies, pp. 12–20. Universiti Teknologi Malaysia, Johar, Malaysia (2014)

  16. Singh, M.: Simulative investigation on the effect of different parameters on the performance of IsOWC link. J. Opt. Commun. ISSN (Online) 2191-6322, ISSN (Print) 0173-4911. https://doi.org/10.1515/joc-2016-0058 (2016)

  17. Singh, M.: Modelling and performance analysis of 10 Gbps inter-satellite optical wireless communication link. J. Opt. Commun. ISSN (Online) 2191-6322, ISSN (Print) 0173-4911. https://doi.org/10.1515/joc-2016-0092 (2016)

  18. Hitam, S., Suhaimi, S.N., Noor, A.S.M., Anas, S.B.A., Sahbudin, R.K.Z.: Performance analysis on 16-channels wavelength division multiplexing in free space optical communication under tropical regions environment. J. Comput. Sci. 8(1), 145–148 (2012)

    Article  Google Scholar 

  19. Fadhil, H.A., Amphawan, A., Shamsuddin, H.A.B., Abd, T.H., Al - Khafaji, H.M.R., Aljunid, S.A., Ahamed, N.: Optimization of free space optics parameters: an optimum solution for bad weather conditions. Opt. Int. J. Light Electron Opt. 124(19), 3969–3973 (2013)

    Article  Google Scholar 

  20. Singh, M.: Impact of various parameters on the performance of inter-aircraft optical wireless communication link. J. Opt. Commun. ISSN (Online) 2191-6322, ISSN (Print) 0173-4911

  21. Singh, M.: Simulative analysis of an inter-aircraft optical wireless communication system using amplifier. J. Opt. Commun. ISSN (Online) 2191-6322, ISSN (Print) 0173-4911. https://doi.org/10.1515/joc-2016-0022 (2016)

  22. Singh, M: Evaluation of FSO link using array of photodetectors, journal of optical communications. ISSN (Online) 2191-6322, ISSN (Print) 0173-4911. https://doi.org/10.1515/joc-2016-0026 (2016)

  23. Abtahi, M., Lemieux, P., Mathlouthi, W., Rusch, L.A.: Suppression of turbulence-induced scintillation in free-space optical communication systems using saturated optical amplifiers. J. Lightwave Technol. 24(12), 4966–4973 (2006)

    Article  Google Scholar 

  24. Arnon, S.: Performance of a laser \(\upmu \)satellite network with an optical preamplifier. J. Opt. Soc. Am. A 22(4), 708–715 (2005)

    Article  Google Scholar 

  25. Singh, M.: Enhanced performance analysis of inter-aircraft optical wireless communication link (IaOWC) usinf EDFA pre-amplifier. Wirel. Pers. Commun. 95(1), 1–11 (2017). Springer

    Article  Google Scholar 

  26. Khalighi, M.A., Aitamer, N., Schwartz, N., Bourennane, S.: Turbulence mitigation by aperture averaging in wireless optical systems. In: IEEE 10th International Conference on Telecommunications, 8th–10th, Zagreb, Croatia (2009)

  27. Kaur, P., Jain, V.K., Kar, S.: Effect of atmospheric conditions and aperture averaging on capacity of free space optical links. Opt. Quant. Electron. 46(9), 1139–1148 (2014)

    Article  Google Scholar 

  28. Kaur, P., Jain, V.K., Kar, S.: Performance analysis of free space optical links using multi-input multi-output and aperture averaging in presence of turbulence and various weather conditions. IET Commun. 9(8), 1104–1109 (2015). 5 21

    Article  Google Scholar 

  29. Kumar, N., Rana, D.R.: Enahnced performance analysis of inter-aircraft optical wireless communication (IaOWC) system. Optik 125, 486–488 (2014). Elsevier

    Article  Google Scholar 

  30. Sharma, V., Kumar, N.: Improved analysis of 2.5 Gbps inter-satellite link (ISL) in inter-satellite optical-wireless communication (IsOWC) system. Opt. Commun. 286, 96–102 (2013). Elsevier

    Article  Google Scholar 

  31. Kumar, N., Sharma, A.K., Kapoor, V.: Enahnced performance of 10 Gb/s optical ODFM-RoF transmission links. Optik 125, 1864–1867 (2014). Elsevier

    Article  Google Scholar 

  32. Sharma, V., Kaur, A.: Moeling and simulation of long reach high speed inter-satellite link (ISL). Optik 125, 883–886 (2014). Elsevier

    Article  Google Scholar 

  33. Armstrong, J.: OFDM for optical communications. J. Lightwave Technol. 27(3), 189–204 (2009)

    Article  MathSciNet  Google Scholar 

  34. Sharma, V., Kaur, G.: High speed long reach OFDM-FSO transmission link incorporating OSSB ans OTSB schemes. Optik 124, 6111–6114 (2014)

    Article  Google Scholar 

  35. Sharma, V., Chaudhary, S.: Implementation of hybrid OFDM-FSO transmission systems. Int. J. Comput. Appl. 58(8), 37–40 (2012)

    Google Scholar 

  36. Robinson, S., Jasmine, S.: Performance Analysis of Hybrid WDM-FSO System Under Various Weather Conditions. Frequenz, pp. 1–9. DeGruyter, Berlin (2016)

    Google Scholar 

  37. Dayal, N., Singh, P., Kaur, P.: Long Range Cost Effective WDM-FSO System Using Hybrid Optical Amplifiers, Wireless Personal Communications, pp. 1–13. Springer, Berlin (2017)

    Google Scholar 

  38. Singh, P., Kaur, P., Grover, M., Madhu, C.: Multibeam WDM-FSO system: an optimum solution for clear and hazy weather conditions. Wirel. Pers. Commun. 97, 1–13 (2017)

    Article  Google Scholar 

  39. Hitam, S., Suhaimi, S.N., Noor, A.S.M., Sahbudin, S.B.A.A., Zakiah, R.K.: Performance analysis on 16-channels wavelength division multiplexing in free space optical transmission under tropical regions environment. J. Comput. Sci. 8(1), 145 (2012)

    Article  Google Scholar 

  40. Shaddad, R., Mohammad, A.B., Al-Hetar, A.: Performance evaluation for optical backhaul and wireless front-end in hybrid opticalwireles access network. Optoelectron. Adv. Mater. Rapid Commun. 5(3–4), 376–380 (2011)

    Google Scholar 

  41. Fadhil, H.A., Amphawan, A., Shamsuddin, H.A., Hussein Abd, T., Al-Khafaji, H.M., Aljunid, S., Ahmed, N.: Optimization of free space optics parameters: an optimum solution for bad weather conditions. Opt. Int. J. Light Electron Opt. 124(19), 3969–3973 (2013)

    Article  Google Scholar 

  42. Kumar, N., Sharma, A.K., Kapoor, V.: Performance evaluation of free space optics communication system in the presence of forward error correction techniques. J. Opt. Commun. 32, 243–245 (2011)

    Article  Google Scholar 

  43. Rana, D.R., Kumar, N.: Enhanced performance analysis of inter-aircraft optical-wireless communication (IaOWC). System 125(1), 486–488 (2014)

    Google Scholar 

  44. Sahu, N., Prajapti, J.C.: Optimization of WDM-FSO link using multiple beams under different rain condition. Int. J. Adv. Res. Electron. Commun. Eng. 4, 1125–1131 (2015)

    Google Scholar 

  45. Korevaar, E.: Availability of free space optics (FSO) and hybrid FSO/RF systems. Proc. SPIE Opt. Wireless Commun. IV. 530, 84–95 (2001)

    Google Scholar 

  46. Bloom, S., Korevaar, E.: Understanding the performance of free space optics. J. Opt. Netw. 2(6), 178–200 (2003)

    Google Scholar 

  47. Akiba, M., Ogawa, K., Walkamori, K., Kodate, K., Ito, S.: Measurements and simulation of the effect of snow fall on free space optical propagation. Appl. Opt. 47(31), 5736–5743 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtab Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M. Performance analysis of WDM-FSO system under adverse weather conditions. Photon Netw Commun 36, 1–10 (2018). https://doi.org/10.1007/s11107-018-0763-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0763-y

Keywords

Navigation