Skip to main content
Log in

All-optical regenerative technique for width-tunable ultra-wideband signal generation

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

We demonstrate all-optical generation of width-tunable mono-cycle pulses for ultra-wideband communication. It has been shown that the width of the mono-cycle pulses can be tuned dynamically by simply varying the power of the optical signal. We also investigate the regenerative property of the nonlinear medium-based technique for the generation of mono-cycle pulses. For the purpose of comparison, ultra-wideband mono-cycle pulses are also generated through the optical delay line-based technique. It has been demonstrated through numerical simulations that the nonlinear medium-based technique is highly resilient to amplified spontaneous emission noise that is induced over the optical signal. Furthermore, we have shown that the highly nonlinear fiber-based nonlinear medium performs better than the semiconductor optical amplifier-based medium. Bit error rate measurements are taken for different values of optical signal-to-noise ratios in order to elaborate our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pan, S., Yao, J.: Photonic generation of chirp-free UWB signals for UWB over fiber applications. In: IEEE International Topical Meeting on Microwave Photonics (MWP), Spain (2009)

  2. Porcine, D., Hirt, W.: Ultra-wideband radio technology: potential and challenges ahead. IEEE Commun. Mag. 41(7), 66–74 (2003)

    Article  Google Scholar 

  3. Aiello, G., Rogerson, G.: Ultra-wideband wireless systems. IEEE Microw. Mag. 4(2), 36–47 (2003)

    Article  Google Scholar 

  4. Kim, Y., Kim, S.: Performance evaluation for UWB signal transmissions in distributed multi-cell environment using ROF technology. In: IEEE International Topical meeting on Microwave Photonics, p. 173 (2005)

  5. Li, P., Chen, H.: Gigabit/s photonic generation, modulation and transmission for a reconfigurable impulse radio UWB over fiber system. IEEE Photon. J. 4(3), 805–816 (2012)

    Article  Google Scholar 

  6. Cui, W., Shao, T.: Wavelength reuse in a UWB over fiber system based on phase modulation to intensity modulation conversion and destructive interferencing. J. Light. Technol. 31(17), 2904–2912 (2013)

    Article  Google Scholar 

  7. Chen, D., Wang, R.: UWB signal generation based on XGM effect in a DFB laser. In: IEEE 15th International Conference on Optical Communications and Networks (ICOCN) (2016)

  8. Moreno, V., Rius, M.: Integrable high order UWB pulse photonic generator based on cross phase modulation in a SOA-MZI. OSA Opt. Exp. 21(19), 22911–22917 (2013)

    Article  Google Scholar 

  9. Moreno, V., Rius, M.: UWB doublet generation employing cross-phase modulation in a semiconductor optical amplifier Mach–Zehnder interferometer. IEEE Photon. J. 5(6), 7101106–7101112 (2013)

    Article  Google Scholar 

  10. Hu, H., Sun, J.: Filter-free optically switchable and tunable ultrawideband monocycle generation based on wavelength conversion and fiber dispersion. IEEE Photon. Technol. Lett. 22(1), 42–44 (2010)

    Article  Google Scholar 

  11. Yu, Y., Dong, J.: UWB monocycle generation and bi-phase modulation based on Mach–Zehnder modulator and semiconductor optical amplifier. IEEE Photon. J. 4(2), 327–339 (2012)

    Article  Google Scholar 

  12. Zadok, A., Wu, X.: Photonic generation of ultra-wideband signals via pulse compression in a highly nonlinear fiber. IEEE Photon. Technol. Lett. 22(4), 239–241 (2010)

    Article  Google Scholar 

  13. Velanas, P., Bogris, A.: Ultrawide-band pulse generation based on cross phase modulation in fibers. In: IEEE/LEOS Winter Topical Meeting Series, pp. 90–91 (2008)

  14. Zhou, E., Xu, X.: Photonic ultrawideband pulse generation with HNL-DSF-based phase and intensity modulator. IEEE Photon. Technol. Lett. 23(7), 396–398 (2011)

    Article  Google Scholar 

  15. Aziz, B., Mehmood, T., Ghafoor, S.: UWB over fiber transmission to multiple radio access units using all-optical signal processing. Photon. Netw. Commun. 34(2), 280–287 (2017)

    Article  Google Scholar 

  16. Han, J., Nguyen, C.: Ultra-wideband electronically tunable pulse generators. IEEE Microw. Wirel. Comput. Lett. 14(3), 112–114 (2004)

    Article  Google Scholar 

  17. Agrawal, G.: Non Linear Fiber Optics, 5th edn. Elsevier, New York (2013)

    Google Scholar 

  18. Ohman, F., Bischoff, S., Tromborg, B.: Noise and regeneration in semiconductor waveguides with saturable gain and absorption. IEEE J. Quant. Electron. 40(3), 245–255 (2004)

    Article  Google Scholar 

  19. Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic press, London (2012)

    MATH  Google Scholar 

  20. Baveja, P.P., Meywar, D.D., Agrawal, G.P.: Optimization of all-optical 2R regenerators operating at 40 Gb/s: role of dispersion. J. Lightw. Technol. 27(17), 3831–3836 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Ghafoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirza, J., Ghafoor, S. & Hussain, A. All-optical regenerative technique for width-tunable ultra-wideband signal generation. Photon Netw Commun 38, 98–107 (2019). https://doi.org/10.1007/s11107-018-0818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0818-0

Keywords

Navigation