Skip to main content
Log in

A novel auxiliary graph model for effective dynamic traffic grooming in light-trail optical WDM mesh networks

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A light trail is a unidirectional bus from a convener node to an end node. The main advantage of a light trail over a light path is that the communication channel of a light trail can be accessed by intermediate nodes providing more flexibility for traffic grooming. Several auxiliary graph models have been developed in the literature for traffic grooming in light-trail optical WDM mesh networks. These auxiliary graph models have one or more drawbacks that do not fully reflect the characteristics of a light trail. This paper develops a novel auxiliary graph model that has none of the drawbacks and is able to reflect all characteristics of a light trail. Based on the auxiliary graph model, two effective dynamic traffic grooming algorithms are proposed. The proposed dynamic traffic grooming algorithms are shown to yield low request blocking ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gumaste, A., Chlamtac, I.: Light-trails: an optical solution for IP transport. OSA J. Opt. Netw. 3(5), 261–281 (2004)

    Article  MATH  Google Scholar 

  2. Ye, Y., H. Woesner, H., Grasso, R., Chen, T., Chlamtac, I.: Traffic grooming in light trail networks. In: Proc. IEEE Global Telecommun. Conf. (GLOBECOM), pp. 1957–1962 (2005)

  3. Ye, Y., Woesner, H., Chlamtac, I.: OTDM light-trail networks. In: Proceedings of 7th IEEE International Conference on Transparent Optical Networks (ICTON), 1, pp. 20–24 (2005)

  4. Fu, M., Jiang, J., Le, Z.: Design and simulation of the light-trail node for mesh WDM networks. J. Opt. Commun. 34(4), 295–305 (2013)

    Article  Google Scholar 

  5. Zhu, K., Mukherjee, B.: A review of traffic grooming in WDM optical networks: architectures and challenges. Opt. Netw. Mag. 4(2), 55–64 (2003)

    Google Scholar 

  6. Balasubramanian, S., Kamal, A.E., Somani, A.K.: Network design for IP-centric light trail networks. BROADNETS 45–54, (2005)

  7. Gumaste, A., Zheng, S. Q.: Dual auction (and recourse) opportunistic protocol for light-trail network design. In: Proceedings of IEEE/IFIP International Conference on Wireless and Optical Communication Networks (2006)

  8. Bafna, P., Gumaste, A., Ghani, N.: Delay sensitive smoothed round robin (DS2R2) scheduler for high-speed optical networks. IEEE Commun. Lett. 11(7), 628–630 (2007)

    Article  Google Scholar 

  9. Hsu, C. F., Hsu, K. K., Ku, C. H.: An efficient dynamic bandwidth allocation algorithm with two-round deliberation in light-trail networks. In: Proceedings of 13th IEEE International Conference on Network-Based Information System (NBiS), pp. 260–264 (2010)

  10. Faroughi, A., Rahbar, A. G.: A new MAC protocol for slotted light-trail optical networks. In: Proceedings of 7th IEEE International Symposium on Telecommunication (IST), pp. 799–803 (2014)

  11. Strand, J., Chiu, A.L., Tkach, R.: Issues for routing in the optical layer. IEEE Commun. Mag. 39(2), 81–87 (2001)

    Article  Google Scholar 

  12. Gumaste, A.: Light-trails and light-frame architectures for optical networks. Ph.D. thesis, Fall 2003, University of Texas at Dallas (2003)

  13. Fang, J., He, W., Somani, A.K.: Optimal light trail design in WDM optical networks. Proc. IEEE Int. Conf. Commun. (ICC) 3, 1699–1703 (2004)

    Google Scholar 

  14. Ayad, A. S., Sayed, K. M. E., Ahmed, S. H.: Efficient solution of the traffic grooming problem in light-trail optical networks. In: Proceedings of 11th IEEE Symposium Computers and Communication (ISCC), (2006)

  15. Wu, B., Yeung, K.L.: Light-trail assignment in WDM optical networks. In: Proceedings of IEEE Global Telecommunication Conference (GLOBECOM), pp. 1–5 (2006)

  16. Gumaste, A., Palacharla, P.: Heuristic and optimal techniques for light-trail assignment in optical ring WDM networks. Comput. commun. 30(5), 990–998 (2007)

    Article  Google Scholar 

  17. Ayad, A.S., Elsayed, K.M.F., Ahmed, S.H.: Enhanced optimal and heuristic solutions of the routing problem in light-trail networks. J. Photonic Netw. Commun. 15(1), 7–18 (2008)

    Article  Google Scholar 

  18. Gumaste, A., Wang, J., Karandikar, A., Ghani, N.: Multihop light-trails (MLT)—a solution to extended metro networks. In: Proceedings of IEEE International Conference on Communications (ICC),pp. 1–6 (2009)

  19. Fu, M., Zhuang, Y., Quan, B., Le, Z.: A DFS-based traffic grooming algorithm for light-trail networks. Unifying Electrical Engineering and Electronics Engineering. 1689–1695 (2014)

  20. De, T.: Traffic grooming based on light-trail in wavelength routed optical network. In: Proceedings of International Conference on Computer Science and Information System (ICCSIS) (2015)

  21. Balasubramanian, S., Somani, A.K.: Design algorithms for path-level grooming of traffic in WDM metro optical networks. J. Opt. Networking 7(8), 759–782 (2008)

    Article  Google Scholar 

  22. Zhang, W., Kandah, F., Wang, C., Li, H.: Dynamic light trail routing in WDM optical networks. Photonic Netw. Commun. 21(1), 78–89 (2011)

    Article  Google Scholar 

  23. Hsu, C. F., Tang, T. H., Chang, Y. C.: On optimal light-trail assignment for multicast traffic with grooming capabilities support. In: Proceedings of 2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS), pp. 569–573 (2013)

  24. Hsu, C.F., Tang, T.H.: On dynamic multicast traffic provisioning with grooming capabilities support in light-trail networks. Int. J. Netw. Distrib. Comput. 1(4), 239–250 (2013)

    Article  Google Scholar 

  25. Zhu, K., Zang, H., Mukherjee, B.: A comprehensive study on next-generation optical grooming switches. IEEE J. Sel. Areas Commun. 21(7), 1173–1186 (2003)

    Article  Google Scholar 

  26. Collins, A. A.: Dynamically reconfigurable time–space–time digital switch and network. U.S. Patent No. 4,701,907, 20 Oct. (1987)

  27. Bellman, R.E.: On a routing problem. Quart. Appl. Math. 18, 87–90 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ford Jr., L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  29. Moore, E. F.: The shortest path through a maze. In: Proceedings of the International Symposium on the Theory of Switching, pp. 285–292, Harvard University Press (1959)

  30. Chiu, A.L., et al.: Architectures and protocols for capacity efficient, highly dynamic and highly resilient core networks. J. Opt. Commun. Netw. 4(1), 1–14 (2012)

    Article  Google Scholar 

  31. Mukherjee, B., Banerjee, D., Ramamurthy, S.: Some principles for designing a wide-area WDM optical network. IEEE/ACM Trans. Netw. 4(5), 684–696 (1996)

    Article  Google Scholar 

  32. Saleh, A.A.M.: Dynamic multi-terabit core optical networks: architecture, protocols, control and management (CORONET). DARPA BAA, pp. 6–29 (2006)

Download references

Acknowledgements

This research was supported by the Ministry of Science and Technology, Taiwan, under grant MOST 104-2221-E-007-082-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Chun Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HC., Zhuang, YX. A novel auxiliary graph model for effective dynamic traffic grooming in light-trail optical WDM mesh networks. Photon Netw Commun 38, 1–13 (2019). https://doi.org/10.1007/s11107-019-00837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-019-00837-z

Keywords

Navigation