Skip to main content
Log in

Novel encryption technique for security enhancement in optical code division multiple access

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel two dimensional (2D) wavelength/time (W/T) optical code division multiple access (OCDMA) code with zero cross-correlation property to minimize multiple access interface (MAI) is addressed. The code is constructed using various features of two different one-dimensional codes, i.e., multi-diagonal code and prime hop code referred as multi-diagonal prime hopping (MDPHC) code. The proposed 2D W/T MDPHC code is generated using java software version 8.1, which is found to be optimal. In this paper, the code complexity of the proposed 2D code is also derived. In addition to the novel 2D code design, security provision at the photonic layer of the OCDMA network is also addressed by transmitting the data through a novel encrypted circuit in order to prevent attacks by an eavesdropper. In this work, the proposed encryption circuit is integrated with the proposed 2D (W/T) MDPHC OCDMA encoder to enhance the overall security performance. The proposed model is validated using optisystem software version 14. Robustness of the proposed technique against different types of attacks such as ciphertext-only attack, known plain text attack, chosen plaintext attack, energy detection attack in on off keying optical code division multiple access, Brute-force search attack is investigated theoretically. Bit error rate is also estimated for different fiber distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. PhD Thesis Report, Thapar University, India. http://tudr.thapar.edu:8080/jspui/bitstream/10266/2789/4/2789.pdf. Accessed 2017

  2. Leiard, D.E., Jiang, Z., Wiener, A.M.: Experimental investigation of security issues in OCDMA: a code switching scheme. IET Electron. Lett. 41, 817–819 (2005)

    Article  Google Scholar 

  3. Wang, X., Wada, N., Miyazaki, T., Cincotti, G., Kitayama, K.: Asynchronous multiuser coherent OCDMA system with shift code keying and balanced detection. IEEE J. Sel. Top. Quantum Electron. 13, 1463–1470 (2007)

    Article  Google Scholar 

  4. Chung, H.S., Chang, S., Kim, B.K., Kim, K.: Security enhanced OCDMA system based on incoherent broadband light source and bipolar coding. In: Proceedings Optical Fiber Communication, 2007, pp. 1–3

  5. Chung, H.S., Chang, S., Kim, B.K., Kim, K.: Experimental demonstration of security improved OCDMA scheme based on incoherent broadband light source and bipolar coding. Opt. Fiber Technol. 14, 130–133 (2008)

    Article  Google Scholar 

  6. Wang, X., Wada, N., Miyazaki, T., Kitayama, K.: Coherent OCDMA System using DPSK data format with balanced detection. IEEE Photonics Technol. Lett. 18, 826–828 (2006)

    Article  Google Scholar 

  7. Dai, B., Gao, Z., Wang, X., Kataoka, N., Wada, N.: Demonstration of differential detection on attacking code-shift-keying OCDMA systems. IET Electron. Lett. 46, 1680–1682 (2010)

    Article  Google Scholar 

  8. Jiang, Z., Leiard, D.E., Wiener, A.M.: Experimental investigation of security issues in OCDMA. IEEE J. Lightwave Technol. 24, 4228–4234 (2006)

    Article  Google Scholar 

  9. Leaird, D.E., Huang, C.B., Jiang, Z., Park, S.G., Weiner, A.M.: DPSK based eavesdropper vulnerability in two-code keyed O-CDMA systems. In: Proceedings Optical Fiber Communication, 2008, pp. 1–3

  10. Dai, B., Gao, Z., Wang, X., Kataoka, N., Wada, N.: Experimental investigation on security of temporal phase coding OCDMA system with code-shift-keying and differential phase shift keying. In: Proceedings Asia Communication and Photonics Conference, 2010, pp. 427–428

  11. Xue, F., Du, Y., Yoo, S.J.B., Ding, Z.: Security issues on spectral phase encoded optical CDMA with phase masking scheme. In: Proceedings Optical Fiber communication and National Fiber Optics Conference, 2006, pp. 1–3

  12. Gao, K., Wu, C., Sheng, X., Shang, C., Liu, L., Wang, J.: Optical code division multiple access secure communications systems with rapid configurable polarization shift key user code. Opt. Eng. 54, 1–7 (2015)

    Google Scholar 

  13. Yoo, S.J.B., Heritage, J.P., Hernandez, V.J.: Spectral phase encoded time spread optical code division multiple access technology for next generation communication networks. Opt. Eng. 6, 1210–1227 (2007)

    Google Scholar 

  14. Wu, B.B., Narimanov, E.E.: A method for secure communications over a public fiber-optical network. Opt. Express 14, 3738–3751 (2006)

    Article  Google Scholar 

  15. Fok, M.P., Prucnal, P.R.: A compact and low-latency scheme for optical steganography using chirped fiber Bragg grating. Electron. Lett. 45, 179–180 (2009)

    Article  Google Scholar 

  16. Wu, B., Tian, W.Z., Fok, Y., Shastri, B.J.M.P., Kanoff, D.R.: Optical Steganography based on amplified spontaneous emission noise. Opt. Express 21, 2065–2071 (2013)

    Article  Google Scholar 

  17. Zhu, H., Wang, R., Pu, T., Fang, T., Xiang, P., Zheng, J., Wu, W.: Optical steganography of code shift keying OCDMA signal based on incoherent light source. IEEE Photonics J. 7, 1–8 (2015)

    Google Scholar 

  18. Prucnal, P.R., Fok, M.P., Kravtsov, K., Wang, Z.: Optical steganography for data hiding in optical networks. In: Proceedings on 16th International Conference on Digital Signal Processing, 2009, pp. 1–6

  19. Vanwiggeren, G.D., Roy, R.: Communication with chaotic lasers. Science 279, 1198–1200 (1998)

    Article  Google Scholar 

  20. Argris, A., Syvridis, D., Larger, L., Lodi, V.A., Colet, P., Fischer, I.: Chaos-based communications at high bit rates using commercial fiber-optic links. Nature 438, 343–346 (2005)

    Article  Google Scholar 

  21. Yang, L., Zhang, L., Yang, R., Yue, B., Yang, P.: Chaotic dynamics of erbium-doped fiber laser with nonlinear optical loop mirror. Opt. Commun. 285, 143–148 (2012)

    Article  Google Scholar 

  22. Wang, X., Gao, Z., Wang, X., Kataoka, N., Wada, N.: Bit by bit optical code scrambling technique for secure optical communication. Opt. Exp. 19, 343–346 (2011)

    Article  Google Scholar 

  23. Patent, US 8737618 B2 (2014). http://google.com/patents/US8737618?cl=zh-cn/. Accessed 2017

  24. Sacchieri, V., Teixeira, P., Teixeira, A., Cincotti, G.: Secure OCDMA transmission using data pattern scrambling. In: International Conference on Transparent Optical Network, ICTON-2008, pp. 51–54

  25. Fok, M.P., Prucnal, P.R.: All-optical encryption for optical network with interleaved waveband switching modulation. Opt. Lett. 34, 1315–1317 (2009)

    Article  Google Scholar 

  26. Kostinski, N., Kravtsov, K., Prucnal, P.R.: Demonstration of an all optical OCDMA encryption and decryption system with variable two-code keying. IEEE Photonics Technol. Lett. 20, 2045–2047 (2008)

    Article  Google Scholar 

  27. Wang, Z., Huang, Y.K., Deng, Y., Chang, J., Prucnal, P.R.: Optical encryption with OCDMA code swapping using all-optical XOR logic gate. IEEE Photonics Technol. Lett. 21, 411–413 (2009)

    Article  Google Scholar 

  28. Chang, W.H., Yang, G.C., Chang, C.Y., Kwong, W.C.: Enhancing optical CDMA confidentiality with multi code keying encryption. IEEE J. Lightwave Technol. 33, 1708–1718 (2015)

    Article  Google Scholar 

  29. Reshma, A.T., Vipin, V.R.: Security enhancement of optical code division multiple access system using multicode keying encryption. Int. J. Innov. Res. Comput. Commun. Eng. 4, 1608–1613 (2016)

    Google Scholar 

  30. Castro, J.M., Djordjevic, I.B.: Novel super structure bragg gratings for optical encryption. IEEE J. Lightwave Technol. 24, 1875–1885 (2006)

    Article  Google Scholar 

  31. Jyoti, V., Kaler, R.S.: Design and implementation of 2-dimensional wavelength/time codes for OCDMA. Optik 122, 851–857 (2011)

    Article  Google Scholar 

  32. PhD Thesis Report, Thapar University, India (2014). http://dspace.thapar.edu:8080/jspui/bitstream/10266/3281/5/3281.pdf. Accessed 2017

  33. https://www.researchgate.net/publication/232631992_New_code_structure_for_enhanced_double_weight_EDW_code_for_Spectral_Amplitude_Coding_OCDMA_System. Accessed 2017

  34. Abd, T.H., Aljunid, S.A., Fadhil, H.A., Junita, M.N., Saad, N.M.: Modelling and simulation of a 1.6 Tb/s optical system based on multi-diagonal code and optical code-division multiple access. Ukr. J. Phys. Opt. 13, 54–66 (2012)

    Article  Google Scholar 

  35. Wen, J.H., Lin, J.Y., Liu, C.Y.: Modified Prime-hop codes for optical CDMA systems. IEE Proc. Commun. 150, 404–408 (2003)

    Article  Google Scholar 

  36. Jena, A., Bhanja, U.: Performance analysis of modified two dimensional Golomb code. In: IEEE India Conference INDICON, 2016, pp. 1–6

  37. Feng, T., Chang, Y.: Combinatorial constructions for optimal two-dimensional optical orthogonal codes with λ = 2. IEEE Trans. Inf. Theory 57, 6796–6819 (2011)

    Article  MathSciNet  Google Scholar 

  38. Singhdeo, S., Bhanja, U.: Design and performance analysis of modified two dimensional Golomb code for optical code division multiple access networks. J. Telecommun. Syst. 69, 77–94 (2018)

    Article  Google Scholar 

  39. Goldberg, S., Menendez, R.C., Prucnal, P.R.: Towards a cryptanalysis of spectral phase encoded optical CDMA with phase scrambling. In: Optical fiber Communication Conference (2007)

  40. Abbade, M.L.F., FossaluzzaJr, L.A., Messani, C.A., Taniguti, G.M., Fagotto, E.A.M., Fonseca, I.E.: All optical cryptography through spectral amplitude and delay encoding. J. Microw. Optoelectron. Electromagn. Appl. 12, 376–397 (2013)

    Article  Google Scholar 

  41. https://en.wikipedia.org/wiki/Brute-force_attack. Accessed 2017

  42. https://en.wikipedia.org/wiki/Simple_random_sample

  43. Nasaruddin, Tsujioka, T.: Design of strict variable weight optical orthogonal codes for differentiated quality of service in optical CDMA networks. Comput. Netw. 52, 2077–2086 (2008)

    Article  Google Scholar 

  44. Wang, Z., Chang, J., Prucnal, P.R.: Theoretical analysis and experimental investigation on the confidentiality of 2D incoherent optical CDMA system. J. Lightwave Technol. 28, 1761–1769 (2010)

    Article  Google Scholar 

  45. Goursaud, C., Morelle, M., Vergonjanne, A.J., Berthelemot, C.A., Cances, J.P., Dumas, J.M.: Optimal code design for multi-wavelength OOC optical CDMA system. In: Proceedings of 5th International Symposium on Communication System Network, Digital Signal Processing, 2006, pp. 65–68

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the all India council of technical education (AICTE) for the funding of this research through the research project number. 20/AICTE/RIFD/RPS (POLICY-II) 2/2012-13. The author would like to thank personally Mr. Philip Weetman, Research Scientist, Optiwave Systems Inc., Canada for his constant support whenever is needed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urmila Bhanja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure e
figure f
figure g
figure h
figure i

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhanja, U., Singhdeo, S. Novel encryption technique for security enhancement in optical code division multiple access. Photon Netw Commun 39, 195–222 (2020). https://doi.org/10.1007/s11107-020-00883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00883-y

Keywords

Navigation