Skip to main content
Log in

Nonbinary Quantum Goppa Codes Exceeding the Quantum Gilbert-Varshamov Bound

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

An explicit construction for nonbinary quantum Goppa codes exceeding the quantum Gilbert-Varshamov bound is given. First, we introduce a weighted symplectic inner product and show a method how to transform weighted codes into quantum codes with respect to the standard symplectic inner product. Then an algorithm to construct a quantum code out of any hyperelliptic curve is presented and implemented in Magma. Finally, we apply a generalization of this algorithm to a tower of function fields by Stichtenoth and show that these codes lie above the quantum Gilbert-Varshamov bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhmin A., Knill E. (2001). Trans. Inform. Theory 47(7):3065–3072

    Article  MATH  MathSciNet  Google Scholar 

  2. Ashikhmin A., Litsyn S., Tsfasman M.A. (2001). Phys. Rev. A 63(3):032311

    Article  ADS  Google Scholar 

  3. Blahut R.E. (2003) Algebraic Codes for Data Transmission. Cambridge University Press, Cambridge MA

    Google Scholar 

  4. Bosma W.,Cannon J.J., Playoust C. (1997). J. Symbol. Comput. 24(3–4):235–266

    Article  MATH  MathSciNet  Google Scholar 

  5. Calderbank A.R., Rains E.M., Shor P.W., Sloane Neil J.A. (1998). IEEE Trans. Inform. Theory 44(4):1369–1387

    Article  MATH  MathSciNet  Google Scholar 

  6. Calderbank A.R., Shor P.W. (1996). Phys. Rev. A 54(2):1098–1105

    Article  ADS  Google Scholar 

  7. Chen H. (2001). IEEE Trans. Inform. Theory 47(5):2059–2061

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen H., Ling S., Xing C. (2001). IEEE Trans. Inform. Theory 47(5):2055–2058

    Article  MATH  MathSciNet  Google Scholar 

  9. Feng K., Ling S., Xing C. (2006). Trans. Inform. Theory 52(3):986–991

    Article  MathSciNet  Google Scholar 

  10. Gottesman D. (1996). Phys. Rev. A 54(3):1862–1868

    Article  ADS  MathSciNet  Google Scholar 

  11. Grassl M., Beth Th., Rötteler M. (2003). Int. J. Found. Comput. Sci. 47(5):757–775

    Article  Google Scholar 

  12. M. Grassl, W. Geiselmann, and T. Beth, Quantum reed-solomon codes, in AAECC-13, Hawai (1999). pp. 231–244.

  13. J.-L. Kim and J. Walker, Nonbinary quantum error-correcting codes from algebraic curves. submitted to Discrete Math as a special issue of Com2MaC conference (2004).

  14. Matsumoto R. (2002). IEEE Trans. Inform. Theory 48(7):2122–2124

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Niehage, Master’s thesis, University of Mannheim, Germany (2004).

  16. Rains E.M. (1999). IEEE Trans. Inform. Theory 45(6):1827–1832

    Article  MATH  MathSciNet  Google Scholar 

  17. S. A. Stepanov, Codes on Algebraic Curves (Kluwer Academic/Plenum Publishers, 1999).

  18. Stichenoth H. (1993) Algebraic Function Fields and Codes. Springer, Berlin

    Google Scholar 

  19. Stichtenoth H. (1988). J. Pure Appl. Algebra 55:199–211

    Article  MathSciNet  Google Scholar 

  20. Stichtenoth H. (2006). IEEE Trans. Inform. Theory 52(5):2218–2224

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Niehage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niehage, A. Nonbinary Quantum Goppa Codes Exceeding the Quantum Gilbert-Varshamov Bound. Quantum Inf Process 6, 143–158 (2007). https://doi.org/10.1007/s11128-006-0047-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-006-0047-9

Keywords

PACS

Navigation