Skip to main content
Log in

Unitary and non-unitary manipulations of qubit-bath entanglement: non-Markov qubit cooling

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Initialization of quantum logic operations makes it imperative to cool down the information-carrying qubits as much and as fast as possible, so as to purify their state, or at least their ensemble average. Yet, the limit on the speed of existing cooling schemes is either the duration of the qubit equilibration with its bath or the decay time of an auxiliary state to one of the qubit states. Here we show that highly-frequent phase-shifts or measurements of the state of thermalized qubits can be designed to affect the qubit-bath entanglement so that the qubits undergo cooling, well before they re-equilibrate with the bath and without resorting to auxiliary states. These processes can be used in principally novel, advantageous, cooling schemes to assist quantum logic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spohn H.: Entropy production for quantum dynamical semigroups. J. Math. Phys 19, 1227 (1978)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Alicki R.: The quantum open system as a model of the heat engine. J. Phys. A 12, L103 (1979)

    Article  ADS  Google Scholar 

  3. Landau L.D., Lifshitz E.M.: Statistical Physics 3rd edn, part 1. Pergamon Press, New York (1980)

    Google Scholar 

  4. Jarzynski C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett 78, 2690 (1997)

    Article  CAS  ADS  Google Scholar 

  5. Lindblad, G.: Non-equilibrium Entropy and Irreversibility, vol. 5 of Mathematical Physics Studies. Reidel, Dordrecht (1983)

  6. Jeffries C.D.: Dynamic Nuclear Orientation. Interscience, New York (1963)

    Google Scholar 

  7. Gelman D., Kosloff R.: Simulating dissipative phenomena with a random phase thermal wavefunctions, high temperature application of the Surrogate Hamiltonian approach. Chem. Phys. Lett 381(1), 129–138 (2003)

    Article  CAS  ADS  Google Scholar 

  8. Valenzuela S.O., Oliver W.D., Berns D.M., Berggren K.K., Levitov L.S., Orlando T.P.: Microwave- induced cooling of a superconducting qubit. Science 314(5805), 1589–1592 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Wineland D.J., Drullinger R.E., Walls F.L.: Radiation-Pressure Cooling of Bound Resonant Absorbers. Phys. Rev. Lett. 40(25), 1639–1642 (1978)

    Article  CAS  ADS  Google Scholar 

  10. Neuhauser W., Hohenstatt M., Toschek P., Dehmelt H.: Optical-sideband cooling of visible atom cloud confined in parabolic well. Phys. Rev. Lett. 41(4), 233–236 (1978)

    Article  CAS  ADS  Google Scholar 

  11. Monroe C., Meekhof D.M., King B.E., Jefferts S.R., Itano W.M., Wineland D.J., Gould P.: Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75(22), 4011–4014 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Schulman L.S., Gaveau B.: Ratcheting up energy by means of measurement. Phys. Rev. Lett 97, 240405 (2006)

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Piilo J., Maniscalco S., Suominen K.A.: Quantum brownian motion for periodic coupling to an ohmic bath. Phys. Rev. A 75, 32105 (2007)

    Article  ADS  Google Scholar 

  14. Erez N., Gordon G., Nest M., Kurizki G.: Thermodynamic control by frequent quantum measurements. Nature 452, 724 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Scully, M.O.: Extracting work from a single thermal bath via quantum negentropy. Phys. Rev. Lett 87(22), 220601 Nov (2001)

    Google Scholar 

  16. Braginsky V.B., Khalili F.Y.: Quantum Measurement. Cambridge University Press, London (1995)

    Google Scholar 

  17. Kofman A.G., Kurizki G.: Unified theory of dynamically suppressed qubit decoherence in thermal baths. Phys. Rev. Lett. 93, 130406 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Goren G., Erez N., Kurizki G.: Universal dynamical decoherence control of noisy single-and multi-qubit systems. J. Phys. B 40, S75 (2007)

    Article  ADS  Google Scholar 

  19. Cohen-Tannoudji C., Dupont-Roc J., Grynberg G.: Atom-Photon Interactions. Wiley, New York (1992)

    Google Scholar 

  20. Breuer H.-P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  21. Misra B., Sudarshan E.C.G.: Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  22. Kofman A.G., Kurizki G.: Acceleration of quantum decay processes by frequent observations. Nature (London) 405, 546–550 (2000)

    Article  CAS  ADS  Google Scholar 

  23. Facchi, P., Pascazio, S.: Quantum zeno and inverse quantum zeno effects. In: Progress in Optics, vol.42, p.147. Elsevier, Amsterdam (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Bensky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensky, G., Gordon, G., Gelbwaser-Klimovsky, D. et al. Unitary and non-unitary manipulations of qubit-bath entanglement: non-Markov qubit cooling. Quantum Inf Process 8, 607–617 (2009). https://doi.org/10.1007/s11128-009-0140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0140-y

Keywords

PACS

Navigation