Skip to main content
Log in

Abrupt decay of entanglement and quantum communication through noise channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the dynamics of two qubits state through the Bloch channel. Starting from partially entangled states as input state, the output states are more robust compared with those obtained from initial maximally entangled states. Also the survivability of entanglement increased as the absolute equilibrium values of the channel increased or the ratio between the longitudinal and transverse relaxation times gets smaller. The ability of using the output states as quantum channels to perform quantum teleportation is investigated. The useful output states are used to send information between two users by using the original quantum teleportation protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briegel H.-J., Dür W., Cirac J.I.: Phys. Rev. Lett 81, 5932 (1998)

    Article  CAS  ADS  Google Scholar 

  2. Dür W., Briegel H.-J., Cirac J.I.: Phys. Rev. A 59, 196 (1999)

    Article  Google Scholar 

  3. Gisin N., Ribordy G., Tittel W.: Rev. of Mod. Phys 74, 145 (2002)

    Article  ADS  Google Scholar 

  4. Zhengang H., Zuhong X., Zhang Y.: Phys. Lett. A 354, 79 (2006)

    Article  ADS  Google Scholar 

  5. Prakash H., Chandra N., Prakash R., Shivani R.: J. Phys. B 40, 1613 (2007)

    Article  CAS  ADS  Google Scholar 

  6. Luo S.: J. Phys. A 38, 2991 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Zheng S.: J. Phys. B 39, 4147 (2006)

    Article  CAS  ADS  Google Scholar 

  8. Yu T., Eberly J.H.: Opt. Commu 264, 393 (2006)

    Article  CAS  ADS  Google Scholar 

  9. Yonac M., Yu T., Eberly J.H.: J. Phys. B 39, S621 (2006)

    Article  CAS  ADS  Google Scholar 

  10. Yu T., Eberly J.H.: J. Mod. Opt. 54, 2289–2296 (2007)

    MATH  CAS  Google Scholar 

  11. Aolita L., Chaves R., Cavalcanti D., Acin A., Davidovich L.: Phys. Rev. Lett 100, 080501 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Pineda G., Gorin T., Seligman T.H.: New Journal of Physics 9, 106 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Palma G.M., Suominen K.A., Ekert A.K.: Proc. R. Soc. London A 452, 567 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Georgot B., Shepelyansky D.L.: Phys. Rev.E 62, 3504 (2000)

    Article  ADS  Google Scholar 

  15. Sugahara M., Kruchinin S.P.: Mod. Phys. Lett. B 15, 473 (2001)

    Article  CAS  ADS  Google Scholar 

  16. Ban M., Shibata F., Kitajima S.: J. Phys. B 40, 1613 (2007)

    Article  Google Scholar 

  17. San Ma X., Min Wang An.: Opt. Commu 270, 465 (2007)

    Article  ADS  Google Scholar 

  18. Ban M., Kitajima abd S., Shibata F.: J. Phys. A 38, 4235 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Ban M., Kitajima abd S., Shibata F.: J. Phys. A 38, 7161 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Mahler G., Weberruss V.A.: Quantum Networks, Dynamics of Open Nanostructures, 2nd edn. Springer, New York (1998)

    Google Scholar 

  21. Englert B. G., Metwally N.: J. Mod. Opt 47, 221 (2000)

    MathSciNet  Google Scholar 

  22. Metwally N., Wahiddin M.R.B., Bourennane M.: Opt. Commu 257, 206 (2006)

    Article  CAS  ADS  Google Scholar 

  23. Cui X., Gu S.J., Cao J., Wang Y.: J. Phys. A 40, 13523–13533 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Benatti F., Floreanini R., Romano R.: J. Phys. A 35, 4955 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Daffer S., Wodkiewicz K., Mclver J.: Phys. Rev. A 70, 010304 (2004)

    Article  ADS  Google Scholar 

  26. Englert B.G., Metwally N.: App. Phys. B 72, 55 (2001)

    ADS  Google Scholar 

  27. Peres A.: Phys. Rev. Lett 77, 1413 (1996)

    Article  MATH  CAS  PubMed  MathSciNet  ADS  Google Scholar 

  28. Horodecki R., Horodecki M., Horodecki P.: Phys. Lett. A 222, 1 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  29. Zyczkowski K., Horodecki P., Sanpera A., Lewenstein M.: Phys. Rev. A 58, 883 (1998)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  30. Ikram M., Fu-li Li., Zubairy M.S.: Phys. Rev. A 75, 062336 (2007)

    Article  ADS  Google Scholar 

  31. Metwally N., Abdel-aty M.: Physica C 469, 111 (2009)

    Article  CAS  ADS  Google Scholar 

  32. Horodecki P.: Phys. Lett. A 232, 333 (1997)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  33. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wottors W.K.: Phys. Rev. Lett 70, 1895 (1993)

    Article  MATH  PubMed  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Metwally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metwally, N. Abrupt decay of entanglement and quantum communication through noise channels. Quantum Inf Process 9, 429–440 (2010). https://doi.org/10.1007/s11128-009-0149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0149-2

Keywords

PACS

Navigation