Skip to main content
Log in

A hybrid classical-quantum clustering algorithm based on quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum walk (QW) with the problem of data clustering, and develop two clustering algorithms based on the one-dimensional discrete-time QW. Then, the position probability distributions induced by QW in these algorithms are investigated, which also indicates the possibility of obtaining better results. Consequently, the experimental results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vedral V., Plenio M.: Basics of quantum computation. Prog. Quantum Electron. 22(1), 1–39 (1998)

    Article  CAS  ADS  Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Foundations of Computer Science, 1994 Proceedings, 35th Annual Symposium on, pp. 124–134 (1994)

  3. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  CAS  ADS  Google Scholar 

  4. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Automata, Languages and Programming, pp. 820–831 (1998)

  5. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, ACM, Hersonissos, Greece, pp. 50–59 (2001)

  6. Kempe J.: Discrete quantum walks hit exponentially faster. Probab. Theory Relat. Fields 133(2), 215–235 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, ACM, San Diego, CA, USA (2003)

  8. Horn D., Gottlieb A.: Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett. 88(1), 018702 (2001)

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Trugenberger C.A.: Quantum pattern recognition. Quantum Inf. Process. 1(6), 471–493 (2002)

    Article  MathSciNet  Google Scholar 

  10. Childs, A.M., Eisenberg, J.M.: Quantum algorithms for subset finding. eprint arXiv: quant-ph/0311038

  11. Schützhold R.: Pattern recognition on a quantum computer. Phys. Rev. A 67(6), 062311 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Aïmeur, E., Brassard, G., Gambs, S.: Quantum clustering algorithms. In: Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR (2007)

  13. Love P.J., Boghosian B.M.: Type ii quantum algorithms. Phys. A Stat. Mech. Appl. 362(1), 210–214 (2006)

    Article  Google Scholar 

  14. Coffey, M.W., Colburn, G.G.: Multidimensional linear diffusion for image enhancement on a type ii quantum computer. In: Proceedings of the Royal Society A: Mathematical. Physical and Engineering Science 463(2085), 2241–2255 (2007)

  15. Brun T.A., Carteret H.A., Ambainis A.: Quantum walks driven by many coins. Phys. Rev. A 67(5), 052317 (2003)

    Article  MathSciNet  ADS  CAS  Google Scholar 

  16. Ekert, A., Hayden, P.M., Inamori, H.: Course 10: Basic concepts in quantum computation. In: Coherent Atomic Matter Waves, vol. 72, Springer, Berlin/Heidelberg, p. 661 (2001)

  17. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  18. Omar, Y., Paunković, N., Sheridan, L., Bose, S.: Quantum walk on a line with two entangled particles. Phys. Rev. A 74(4), 042304–042307 (Atomic, Molecular, and Optical Physics) (2006)

    Google Scholar 

  19. Kempe J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  20. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, ACM, Hersonissos, Greece (2001)

  21. Ambainis A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507–518 (2003)

    Article  MATH  Google Scholar 

  22. Blake, C., Merz, C.: UCI Repository of Machine Learning Databases, Department of ICS, University of California, Irvine., http://archive.ics.uci.edu/ml/ (1998)

  23. Erkan, G.: Language model-based document clustering using random walks. In: Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Association for Computational Linguistics, New York, New York (2006)

  24. Ding, C., Li, T.: Adaptive dimension reduction using discriminant analysis and k-means clustering. In: Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, pp. 521–528 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., He, Y. & Jiang, Jp. A hybrid classical-quantum clustering algorithm based on quantum walks. Quantum Inf Process 10, 13–26 (2011). https://doi.org/10.1007/s11128-010-0169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0169-y

Keywords

Navigation