Skip to main content
Log in

Quantum key distribution via tripartite coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a quantum key distribution protocol using Greenberger Horne Zeilinger tripartite coherent states. The sender and the receiver share similar key by exchanging the correlation coherent states, without basis reconciliation. This allows the protocol to have a transmission efficiency of 100% in a perfect quantum channel. The security of the protocol is ensured by tripartite coherent states correlation and homodyne detection, which allows to detect any eavesdropping easily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee J., Kim M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  2. Yeo Y.: Local noise can enhance two-qubit teleportation. Phys. Rev. A 78, 022334 (2008)

    Article  ADS  Google Scholar 

  3. Metwally N.: Abrupt decay of entanglement and quantum communication through noise channels. Quantum inf. process. 4(4), 429 (2010)

    Article  MathSciNet  Google Scholar 

  4. El Allati, A., Metwally, N., Hassouni, Y.: Transfer information remotely via noise entangled coherent channels. Opt. Commun. (2010), (in press) doi:10.1016/j.optcom.2010.08.041

  5. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Mermin N.D.: Deconstructing dense coding. Phys. Rev. A 66, 132308 (2002)

    Article  ADS  Google Scholar 

  7. Bennett C.H., Brassard G., Mermin N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bennett, C.H., Brassard, G.: In: Proceedings IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, (IEEE, New York), pp. 175–179, (1984)

  9. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Barassad, G., Salvail, L.: In: Lecture note in Computer Science 765, Springer, New York (1994)

  12. Bennett, C.H.: Physics Today, 24, October 1995; Feature issue Quantum Information, Physics World, March 1998

  13. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  14. Gao T., Yan F.L., Wang Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A 38, 5761 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Lee H., Lim J., Yang H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)

    Article  ADS  Google Scholar 

  16. Xiong J. et al.: Unsymmetrical quantum key distribution using tripartite entanglement. Commun. Theor. Phys. 47, 441 (2007)

    Article  Google Scholar 

  17. Zhang Z.J., Liu J., Wang D., Shi S.H.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A 75, 026301 (2007)

    Article  ADS  Google Scholar 

  18. Huang, P., et al: Two-step unsymmetrical quantum key distribution protocol using GHZ triplet states purchase the full-text article. Journal Chine. Universities Posts and telecommunication 16, 114 (2009)

    Google Scholar 

  19. Pereira S.F., Ou Z.Y., Kimble H.J.: Quantum communication with correlated nonclassical states. Phys. Rev. A 62, 042311 (2000)

    Article  ADS  Google Scholar 

  20. Grosshans F. et al.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  21. Grosshans F. et al.: Collective attacks and unconditional security in continuous variable quantum key distribution. Phys. Rev. Lett. 94, 020504 (2005)

    Article  ADS  Google Scholar 

  22. Silberhorn C., Korolkova N., Leuchs G.: Quantum key distribution using Gaussian-modulated coherent states. Phys. Rev. Lett. 88, 167902 (2002)

    Article  ADS  Google Scholar 

  23. Silberhorn C. et al.: Continuous variable quantum cryptography. Phys. Rev. Lett. 89, 167901 (2002)

    Article  ADS  Google Scholar 

  24. Grosshans F., Van Assche G., Wenger J., Brouni R., Certf N.J., Grangier P.: Quantum key distribution using gaussian-modulated coherent states. Nature 421, 238 (2003)

    Article  ADS  Google Scholar 

  25. Joeng H., Kim M.: Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002)

    Article  ADS  Google Scholar 

  26. Greenberger, D.M., Horne, M., Zeilinger, A.: In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, p. 107. Kluwer Academic, Dordrecht (1989)

  27. Gilmore R.: Geometry of symmetrized states. Ann. Phys. (NY) 74, 391 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  28. Glauber R.: The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  29. Glauber R.: Coherent and incoherent states of the radiation field. J. Phys. Rev. 131, 2766 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  30. Fujii, K.: Introduction to coherent states and quantum information theory. quant-ph/0112090 (2001)

  31. Jeong H., Lund A.P., Ralph T.C.: Production of superpositions of coherent states in traveling optical fields with inefficient photon detection. Phys. Rev. A 72, 13801 (2005)

    Article  ADS  Google Scholar 

  32. Gerry C.C., Knight P.L.: Introductory Quantum Optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  33. Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  34. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  35. Zhang R., Garner S.R., Hau L.V.: Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates. Phys. Rev. Lett. 103, 233602 (2009)

    Article  ADS  Google Scholar 

  36. Bennett C.H., Bessette F., Brassard G., salvail L., Smolin J.: Experimental quantum cryptography. J. Cryptol 5, 3 (1992)

    Article  MATH  Google Scholar 

  37. Boström K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  38. Wootters W.K., Zurek W.H.: Experimental quantum cryptography. Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  39. Iblisdir S., Van Assche G., Cerf N.J.: Security of quantum key distribution with coherent states and Homodyne detection. Phys. Rev. Lett. 93, 170502 (2004)

    Article  ADS  Google Scholar 

  40. Garca-Patrn R., Cerf N.J.: Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution. Phys. Rev. Lett. 97, 190503 (2006)

    Article  ADS  Google Scholar 

  41. Renner R., Cirac J.I.: de Finetti representation theorem for infinite-dimensional quantum systems and applications to quantum cryptography. Phys. Rev. Lett. 102, 110504 (2009)

    Article  ADS  Google Scholar 

  42. Zhang X-Y, Guo G-C.: Quantum cryptography using coherent state. Chin. Phys. Lett. 13, 277 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Allati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allati, A.E., Baz, M.E. & Hassouni, Y. Quantum key distribution via tripartite coherent states. Quantum Inf Process 10, 589–602 (2011). https://doi.org/10.1007/s11128-010-0213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0213-y

Keywords

Navigation