Skip to main content
Log in

Quantum search in a possible three-dimensional complex subspace

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Suppose we are given an unsorted database with N items and N is sufficiently large. By using a simpler approximate method, we re-derive the approximate formula cos2 Φ, which represents the maximum success probability of Grover’s algorithm corresponding to the case of identical rotation angles \({\phi=\theta}\) for any fixed deflection angle \({\Phi \in\left[0,\pi/2\right)}\). We further show that for any fixed \({\Phi \in\left[0,\pi/2\right)}\), the case of identical rotation angles \({\phi=\theta}\) is energetically favorable compared to the case \({\left|{\theta - \phi}\right|\gg 0}\) for enhancing the probability of measuring a unique desired state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and Weaknesses of Quantum Computing, quant-ph/9701001v1

  3. Zalka C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751 (1999)

    Article  ADS  Google Scholar 

  4. Farhi E., Gutmann S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57, 2403–2406 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Pati, A.K.: Fast Quantum Search Algorithm and Bounds on it, quant-ph/9807067v1

  6. Jozsa, R.: Searching in Grover’s Algorithm, quant-ph/9901021v1

  7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight Bounds on Quantum Searching, quant-ph/9605034

  8. Grover L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)

    Article  ADS  Google Scholar 

  9. Brassard, G., Høyer, P., Tapp, A.: Quantum counting, quant-ph/9805082

  10. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum Amplitude Amplification and Estimation, quant-ph/0005055v1

  11. Ozhigov, Y.: Speedup of iterated quantum search by parallel performance, quant-ph/9904039v4

  12. Gingrich R., Williams C.P., Cerf N.: Generalized quantum search with parallelism. Phys. Rev. A 61, 052313 (2000)

    Article  ADS  Google Scholar 

  13. Long G.L., Li Y.S., Zhang W.L., Niu L.: Phase matching in quantum searching. Phys. Lett. A 262, 27–34 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Biham E., Biham O., Biron D., Grassl M., Lidar D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60, 2742–2745 (1999)

    Article  ADS  Google Scholar 

  15. Biham E., Biham O., Biron D., Grassl M., Lidar D.A., Shapira D.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A 63, 012310 (2000)

    Article  ADS  Google Scholar 

  16. Carlini, A., Hosoya, A.: Quantum Computers and Unstructured Search: Finding and Counting Items with an Arbitrarily Entangled Initial State, quant-ph/9909089

  17. Long, G.L., Xiao, L., Sun, Y.: General phase matching condition for quantum searching, quant-ph/0107013v1

  18. Høyer P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62, 052304 (2000)

    Article  ADS  Google Scholar 

  19. Li C.M., Hwang C.C., Hsieh J.Y., Wang K.S.: General phase-matching condition for a quantum searching algorithm. Phys. Rev. A 65, 034305 (2002)

    Article  ADS  Google Scholar 

  20. Hsieh J.Y., Li C.M.: General SU(2) formulation for quantum searching with certainty. Phys. Rev. A 65, 052322 (2002)

    Article  ADS  Google Scholar 

  21. Li D.F., Li X.X.: More general quantum search algorithm Q = −I γ VI τ U and the precise formula for the amplitude and the non-symmetric effects of different rotating angles. Phys. Lett. A 287, 304–316 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Bhattacharya N., van Linden van den Heuvell H.B., Spreeuw R.J.C.: Implementation of quantum search algorithm using classical fourier optics. Phys. Rev. Lett. 88, 137901 (2002)

    Article  ADS  Google Scholar 

  23. Long G.L., Yan H.Y., Li Y.S., Tu C.C., Tao J.X., Chen H.M., Liu M.L., Zhang X., Luo J., Xiao L., Zeng X.Z.: Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A 286, 121–126 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Jin, W.L., Chen, X.D.: A desired state can not be found with certainty for Grover’s algorithm in a possible three-dimensional complex subspace. Quantum Inf. Process. doi:10.1007/s11128-010-0209-7, Online First (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenliang Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, W. Quantum search in a possible three-dimensional complex subspace. Quantum Inf Process 11, 41–54 (2012). https://doi.org/10.1007/s11128-011-0230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0230-5

Keywords

Navigation