Skip to main content
Log in

Generation of a genuine four-particle entangled state of trap ions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme for the generation of a genuine four-qubit entangled state in an ion trap. This state has many interesting entanglement properties and possible applications in quantum information processing and fundamental tests of quantum physics. In our scheme, the ion is driven by a standing-wave field, whose frequency is resonant with the ion carrier transition. By adjusting the phase of the field, both the vibration mode population and the ionic carrier excitation can be avoided. So our scheme is insensitive to the vibration states, which is important in view of decoherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rigolin G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement. Phys. Rev. A 71, 032303 (2005)

    Article  ADS  Google Scholar 

  2. Zheng S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)

    Article  ADS  Google Scholar 

  3. Muralidharan S., Panigrahi P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  4. Gao M., Liang L.M., Li C.Z., Wang X.B.: Robust quantum repeater with atomic ensembles against phase and polarization instability. Phys. Rev. A 79, 042301 (2009)

    Article  ADS  Google Scholar 

  5. Zheng S.B.: One-step synthesis of multiatom Greenberger-Horne-Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)

    Article  ADS  Google Scholar 

  6. Zheng S.B.: Generation of entangled states of multiple trapped ions in thermal motion. Phys. Rev. A 70, 045804 (2004)

    Article  ADS  Google Scholar 

  7. Zhu S.L., Monroe C., Duan L.M.: Trapped ion quantum computation with transverse phonon modes. Phys. Rev. Lett. 97, 050505 (2006)

    Article  ADS  Google Scholar 

  8. Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  9. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  10. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2003)

    Article  ADS  Google Scholar 

  11. Verstraete F., Dehaene J., Moor B.D., Verschelde H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. Yeo Y., Chua W.K.: Teleportation and dense coding with genuine multipartite entanglement. Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  13. Dür W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  16. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  17. Wang X.W., Yang G.J.: Generation and discrimination of a type of four-partite entangled state. Phys. Rev. A 78, 024301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Li Y., Bruder C., Sun C.P.: Time-dependent Fröhlich transformation approach for two-atom entanglement generated by successive passage through a cavity. Phys. Rev. A 75, 032302 (2007)

    Article  ADS  Google Scholar 

  19. Lin S., Wen Q.Y., Gao F., Zhu F.C.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  20. Wang H.F., Zhang S.: Linear optical generation of multipartite entanglement with conventional photon detectors. Phys. Rev. A 79, 042336 (2009)

    Article  ADS  Google Scholar 

  21. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  22. Man Z.X., Xia J.Y., An N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75, 052306 (2007)

    Article  ADS  Google Scholar 

  23. Jonathan D., Plenio M.B.: Light-shift-induced quantum gates for ions in thermal motion. Phys. Rev. Lett. 87, 127901 (2001)

    Article  ADS  Google Scholar 

  24. Zheng S.B.: Quantum logic gates for hot ions without a speed limitation. Phys. Rev. Lett. 90, 217901 (2003)

    Article  ADS  Google Scholar 

  25. Cirac J.I., Lewenstein M., Zoller P.: Laser cooling a trapped atom in a cavity: bad-cavity limit. Phys. Rev. A 51, 1650 (1995)

    Article  ADS  Google Scholar 

  26. Mundt A.B., Kreuter A., Becher C., Leibfried D., Eschner J., Schmidt-Kaler F., Blatt R.: Coupling a single atomic quantum bit to a high finesse optical cavity. Phys. Rev. Lett. 89, 103001 (2002)

    Article  ADS  Google Scholar 

  27. Mundt A.B., Kreuter A., Russo C., Becher C., Leibfried D., Eschner J., Schmidt-Kaler F., Blatt R.: Coherent coupling of a single 40Ca+ ion to a high-finesse optical cavity. Appl. Phys. B 76, 117 (2003)

    Article  ADS  Google Scholar 

  28. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Vaidman L., Goldenberg L., Wiesner S.: Error prevention scheme with four particles. Phys. Rev. A 54, R1745 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, YL., Mei, F., Yu, YF. et al. Generation of a genuine four-particle entangled state of trap ions. Quantum Inf Process 11, 229–234 (2012). https://doi.org/10.1007/s11128-011-0244-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0244-z

Keywords

Navigation