Skip to main content
Log in

Concurrence vectors of multipartite states based on coefficient matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a concurrence vector for a multipartite qudit pure state based on its coefficient matrices and define its norm as the generalized concurrence. Moreover, we prove that this generalized concurrence is a good measure according to the three necessary conditions that any measure of entanglement has to satisfy, i.e. it equals zero if and only if the state is separable, it remains invariant under local unitary transformations, and it is not increasing under local operations and classical communication. This generalized concurrence is very practical and convenient for computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peres A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)

    MATH  Google Scholar 

  2. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  6. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  7. Audenaert K., Verstraete F., Moor De.: Variational characterizations of separability and entanglement of formation. Phys. Rev. A 64, 052304 (2001)

    Article  ADS  Google Scholar 

  8. Rungta P., Buzek V., Caves C.M., Hillery M., Milburn G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wootters W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Albeverio S., Fei S.M.: A note on invariants and entanglements. J. Opt. B: Quantum Semiclass. Opt. 3, 223–227 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  11. Akhtarshenas S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A: Math. Gen. 38, 6777–6784 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Huang Y., Wen J., Qiu D.: Practical full and partial separability criteria for multipartite pure states based on the coefficient matrix method. J. Phys. A: Math. Theor. 42, 425306 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Vedral V., Plenio M.B., Rippin M.A., Knight P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Shimoni Y., Shapira D., Biham O.: Characterization of pure quantum states of multiple qubits using the Groverian entanglement measure. Phys. Rev. A 69, 062303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  16. Facchi P., Florio G., Pascazio S.: Probability-density-function characterization of multipartite entanglement. Phys. Rev. A 74, 042331 (2006)

    Article  ADS  Google Scholar 

  17. Linden N., Popescu S.: On multi-particle entanglement. Fortschr. Phys. 46, 567–578 (1998)

    Article  MathSciNet  Google Scholar 

  18. Long Y., Qiu D., Long D.: An entanglement measure based on two order minors. J. Phys. A: Math. Theor. 42, 265301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. Higuchi A., Sudbery A.: How entangled can two couples get. Phys. Lett. A 273, 213–217 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Brown I.D., Stepney S., Sudbery A., Braunstein S.L.: Searching for highly entangled multi-qubit states. J. Phys. A: Math. Gen. 38, 1119–1131 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Uhlmann A.: Optimizing entropy relative to a channel or subalgebra. Open Syst. Inf. Dyn. 5, 209–227 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Qiu, D. Concurrence vectors of multipartite states based on coefficient matrices. Quantum Inf Process 11, 235–254 (2012). https://doi.org/10.1007/s11128-011-0247-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0247-9

Keywords

Navigation