Skip to main content
Log in

Variations on the theme of quantum optical coherence tomography: a review

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We discuss the development of quantum optical coherence tomography (Q-OCT), an imaging modality with a number of potential applications. Although Q-OCT is not expected to replace its eminently successful classical cousin, optical coherence tomography (OCT), it does offer some advantages as a biological imaging paradigm. These include greater axial resolution and higher signal-to-background ratio, immunity to dispersion that can lead to deeper subsurface penetration, and nondestructive probing of light-sensitive samples. Q-OCT also serves as a quantum template for constructing classical systems that mimic its salutary properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Youngquist R.C., Carr S., Davies D.E.N.: Optical coherence-domain reflectometry: a new optical evaluation technique. Opt. Lett. 12, 158–160 (1987)

    Article  ADS  Google Scholar 

  2. Takada K., Yokohama I., Chida K., Noda J.: New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 26, 1603–1606 (1987)

    Article  ADS  Google Scholar 

  3. Danielson B.L., Whittenberg C.D.: Guided-wave reflectometry with micrometer resolution. Appl. Opt. 26, 2836–2842 (1987)

    Article  ADS  Google Scholar 

  4. Gilgen H.H., Novàk R.P., Salathé R.P., Hodel W., Beaud P.: Submillimeter optical reflectometry. J. Lightwave Technol. 7, 1225–1233 (1989)

    Article  ADS  Google Scholar 

  5. Huang H., Swanson E.A., Lin C.P., Schuman J.S., Stinson W.G., Chang W., Hee M.R., Flotte T., Gregory K., Puliafito C.A., Fujimoto J.G.: Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  6. Fercher A.F., Hitzenberger C.K.: Optical coherence tomography. In: Wolf, E. (eds) Progress in Optics, vol. 44, chap 4., pp. 215–302. Elsevier, Amsterdam (2002)

    Chapter  Google Scholar 

  7. Tomlins P.H., Wang R.K.: Theory, developments and applications of optical coherence tomography. J. Phys. D: Appl. Phys. 38, 2519–2535 (2005)

    Article  ADS  Google Scholar 

  8. Brezinski M.E.: Optical Coherence Tomography: Principles and Applications. Academic, San Diego (2006)

    Google Scholar 

  9. Zysk A.M., Nguyen F.T., Oldenburg A.L., Marks D.L., Boppart S.A.: Optical coherence tomography: A review of clinical development from bench to bedside. J. Biomed. Opt. 12, 051403 (2007)

    Article  ADS  Google Scholar 

  10. Drexler, W., Fujimoto, J. (eds): Optical Coherence Tomography: Technology and Applications. Springer, Berlin (2008)

    Google Scholar 

  11. Saleh, B.E.A.: Introduction to Subsurface Imaging, chaps 3 and 4. Cambridge University Press, Cambridge (2011)

  12. Eigenwillig C.M., Biedermann B.R., Wieser W., Huber R.: Wavelength swept amplified spontaneous emission source. Opt. Express 17, 18794–18807 (2009)

    Article  ADS  Google Scholar 

  13. Teich M.C., Keyes R.J., Kingston R.H.: Optimum heterodyne detection at 10.6 μ m in photoconductive Ge:Cu. Appl. Phys. Lett. 9, 357–360 (1966)

    Article  ADS  Google Scholar 

  14. Teich M.C.: Laser heterodyning. J. Mod. Opt. (Optica Acta) 32, 1015–1021 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  15. Hitzenberger C.K., Baumgartner A., Drexler W., Fercher A.F.: Dispersion effects in partial coherence interferometry: Implications for intraocular ranging. J. Biomed. Opt. 4, 144–151 (1999)

    Article  ADS  Google Scholar 

  16. Drexler W., Morgner U., Ghanta R.K., Kärtner F.X., Schuman J.S., Fujimoto J.G.: Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7, 502–507 (2001)

    Article  Google Scholar 

  17. Fercher A.F., Hitzenberger C.K., Sticker M., Zawadzki R., Karamata B., Lasser T.: Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Opt. Commun. 204, 67–74 (2002)

    Article  ADS  Google Scholar 

  18. Smith E.D.J., Zvyagin A.V., Sampson D.D.: Real-time dispersion compensation in scanning interferometry. Opt. Lett. 27, 1998–2000 (2002)

    Article  ADS  Google Scholar 

  19. Fercher A.F., Hitzenberger C.K., Sticker M., Zawadzki R., Karamata B., Lasser T.: Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography. Opt. Express 9, 610–615 (2001)

    Article  ADS  Google Scholar 

  20. Teich M.C., Saleh B.E.A., Stoler D.: Antibunching in the Franck-Hertz experiment. Opt. Commun. 46, 244–248 (1983)

    Article  ADS  Google Scholar 

  21. Teich M.C., Saleh B.E.A.: Observation of sub-Poisson Franck-Hertz light at 253.7 nm. J. Opt. Soc. Am. B 2, 275–282 (1985)

    Article  ADS  Google Scholar 

  22. Teich M.C., Saleh B.E.A.: Photon bunching and antibunching. In: Wolf, E. (eds) Progress in Optics, vol. 26, chap 1., pp. 1–104. North-Holland/Elsevier, Amsterdam (1988)

    Chapter  Google Scholar 

  23. Teich, M.C., Saleh, B.E.A.: Squeezed states of light. Quantum Opt. 1, 153–191 (1989) [Reprinted in Tutorials in Optics, Moore, D.T. (ed.) Optical Society of America, Washington, D.C. (1992), chap. 3, pp. 29–52]

  24. Teich M.C., Saleh B.E.A.: Squeezed and antibunched light. Phys. Today 43(6), 26–34 (1990)

    Article  Google Scholar 

  25. Peřina J., Hradil Z., Jurčo B.: Quantum Optics and Fundamentals of Physics. chaps. 7 and 8. Kluwer, Boston (1994)

    Google Scholar 

  26. Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Chap 22. Cambridge University Press, New York (1995)

    Google Scholar 

  27. Klyshko, D.N.: Photons and Nonlinear Optics. Nauka, Moscow (1980), chaps. 1 and 6 [Translation: Gordon and Breach, New York (1988)]

  28. Saleh B.E.A., Teich M.C.: Fundamentals of Photonics 2nd edn. Wiley, Hoboken (2007)

    Google Scholar 

  29. Abouraddy A.F., Nasr M.B., Saleh B.E.A., Sergienko A.V., Teich M.C.: Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A 65, 053817 (2002)

    Article  ADS  Google Scholar 

  30. Teich, M.C., Saleh, B.E.A., Sergienko, A.V., Abouraddy, A.F., Nasr, M.B.: Quantum Optical Coherence Tomography Data Collection Apparatus and Method for Processing Therefor. U.S. Patent Number 6,882,431, issued 19 April 2005, 6 claims

  31. Teich M.C., Wolga G.J.: Multiple-photon processes and higher order correlation functions. Phys. Rev. Lett. 16, 625–628 (1966)

    Article  ADS  Google Scholar 

  32. Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  33. Larchuk T., Campos R.A., Rarity J.G., Tapster P.R., Jakeman E., Saleh B.E.A., Teich M.C.: Interfering entangled photons of different colors. Phys. Rev. Lett. 70, 1603–1606 (1993)

    Article  ADS  Google Scholar 

  34. Fei H.-B., Jost B.M., Popescu S., Saleh B.E.A., Teich M.C.: Entanglement-induced two-photon transparency. Phys. Rev. Lett. 78, 1679–1682 (1997)

    Article  ADS  Google Scholar 

  35. Yarnall T., Abouraddy A.F., Saleh B.E.A., Teich M.C.: Spatial coherence effects in second- and fourth-order temporal interference. Opt. Express 16, 7634–7640 (2008)

    Article  ADS  Google Scholar 

  36. Walton Z.D., Abouraddy A.F., Sergienko A.V., Saleh B.E.A., Teich M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  37. Hayat M., Abdullah S., Joobeur A., Saleh B.: Maximum likelihood image estimation using photon-correlated beams. IEEE Trans. Image Proc. 11, 838–846 (2002)

    Article  ADS  Google Scholar 

  38. Toussaint K.C. Jr., Di Giuseppe G., Bycenski K.J., Sergienko A.V., Saleh B.E.A., Teich M.C.: Quantum ellipsometry using correlated-photon beams. Phys. Rev. A 70, 023801 (2004)

    Article  ADS  Google Scholar 

  39. Teich, M.C., Saleh, B.E.A.: Mikroskopie s kvantově provázanými fotony (in Czech), Československý časopis pro fyziku 47, 3–8 (1997) [Translation: Entangled-photon microscopy. http://people.bu.edu/teich/pdfs/Cesk-English-47-3-1997.pdf]; U.S. Patent No. 5,796,477 (1998)

  40. Abouraddy A.F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Role of entanglement in two-photon imaging. Phys. Rev. Lett. 87, 123602 (2001)

    Article  ADS  Google Scholar 

  41. Abouraddy A.F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Quantum holography. Opt. Express 9, 498–505 (2001)

    Article  ADS  Google Scholar 

  42. Saleh B.E.A., Abouraddy A.F., Sergienko A.V., Teich M.C.: Duality between partial coherence and partial entanglement. Phys. Rev. A 62, 043816 (2000)

    Article  ADS  Google Scholar 

  43. Abouraddy A.F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Entangled-photon Fourier optics. J. Opt. Soc. Am. B 19, 1174–1184 (2002)

    Article  ADS  Google Scholar 

  44. Saleh, B.E.A, Teich, M.C.: Noise in classical and quantum photon-correlation imaging. In: Friberg, A.T., Dändliker, R. (eds.) Advances in Information Optics and Photonics, vol. PM183, SPIE Press, Bellingham, WA (2008), chap. 21, pp. 423–435

  45. Erkmen B.I., Shapiro J.H.: Phase-conjugate optical coherence tomography. Phys. Rev. A 74, 041601(R) (2006)

    Article  ADS  Google Scholar 

  46. Le Gouët J., Venkatraman D., Wong F.N.C., Shapiro J.H.: Classical low-coherence interferometry based on broadband parametric fluorescence and amplification. Opt. Express 17, 17874–17887 (2009)

    Article  ADS  Google Scholar 

  47. Le Gouët J., Venkatraman D., Wong F.N.C., Shapiro J.H.: Experimental realization of phase-conjugate optical coherence tomography. Opt. Lett. 35, 1001–1003 (2010)

    Article  Google Scholar 

  48. Kaltenbaek R., Lavoie J., Resch K.J.: Classical analogues of two-photon quantum interference. Phys. Rev. Lett. 102, 243601 (2009)

    Article  ADS  Google Scholar 

  49. Lavoie J., Kaltenbaek R., Resch K.J.: Quantum-optical coherence tomography with classical light. Opt. Express 17, 3818–3825 (2009)

    Article  ADS  Google Scholar 

  50. Nasr M.B., Saleh B.E.A., Sergienko A.V., Teich M.C.: Demonstration of dispersion-cancelled quantum-optical coherence tomography. Phys. Rev. Lett. 91, 083601 (2003)

    Article  ADS  Google Scholar 

  51. Nasr M.B., Saleh B.E.A., Sergienko A.V., Teich M.C.: Dispersion-cancelled and dispersion-sensitive quantum optical coherence tomography. Opt. Express 12, 1353–1362 (2004)

    Article  ADS  Google Scholar 

  52. Steinberg A.M., Kwiat P.G., Chiao R.Y.: Dispersion cancellation and high-resolution time measurements in a fourth-order optical interferometer. Phys. Rev. A 45, 6659–6665 (1992)

    Article  ADS  Google Scholar 

  53. Larchuk T.S., Teich M.C., Saleh B.E.A.: Nonlocal cancellation of dispersive broadening in Mach-Zehnder interferometers. Phys. Rev. A 52, 4145–4154 (1995)

    Article  ADS  Google Scholar 

  54. Minaeva O., Bonato C., Saleh B.E.A., Simon D.S., Sergienko A.V.: Odd- and even-order dispersion cancellation in quantum interferometry. Phys. Rev. Lett. 102, 100504 (2009)

    Article  ADS  Google Scholar 

  55. Nasr M.B., Goode D.P., Nguyen N., Rong G., Yang L., Reinhard B.M., Saleh B.E.A., Teich M.C.: Quantum optical coherence tomography of a biological sample. Opt. Commun. 282, 1154–1159 (2009)

    Article  ADS  Google Scholar 

  56. Nasr M.B., Di Giuseppe G., Saleh B.E.A., Sergienko A.V., Teich M.C.: Generation of high-flux ultra-broadband light by bandwidth amplification in spontaneous parametric down-conversion. Opt. Commun. 246, 521–528 (2005)

    Article  ADS  Google Scholar 

  57. Tanzilli S., De Riedmatten H., Tittel W., Zbinden H., Baldi P., De Micheli M., Ostrowsky D.B., Gisin N.: Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron. Lett. 37, 26–28 (2001)

    Article  Google Scholar 

  58. Booth M.C., Atatüre M., Di Giuseppe G., Saleh B.E.A., Sergienko A.V., Teich M.C.: Counterpropagating entangled photons from a waveguide with periodic nonlinearity. Phys. Rev. A 66, 023815 (2002)

    Article  ADS  Google Scholar 

  59. Guillet de Chatellus H., Sergienko A.V., Saleh B.E.A., Teich M.C., Di Giuseppe G.: Non-collinear and non-degenerate polarization-entangled photon generation via concurrent type-I parametric downconversion in PPLN. Opt. Express 14, 10060–10072 (2006)

    Article  ADS  Google Scholar 

  60. Carrasco S., Torres J.P., Torner L., Sergienko A.V., Saleh B.E.A., Teich M.C.: Enhancing the axial resolution of quantum optical coherence tomography by aperiodic quasi-phase-matching. Opt. Lett. 29, 2429–2431 (2004)

    Article  ADS  Google Scholar 

  61. Nasr M.B., Carrasco S., Saleh B.E.A., Sergienko A.V., Teich M.C., Torres J.P., Torner L., Hum D.S., Fejer M.M.: Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. Phys. Rev. Lett. 100, 183601 (2008)

    Article  ADS  Google Scholar 

  62. Teich, M.C., Nasr, M.B., Carrasco, S., Saleh, B.E.A., Sergienko, A.V., Torres, J.P., Torner, L., Hum, D.S., Fejer, M.M.: Generating ultra-broadband biphotons via chirped QPM down-conversion. Opt. Photonics News 19 (12), p. 36 and Magazine Cover (2008)

    Google Scholar 

  63. Saleh B.E.A., Jost B.M., Fei H.-B., Teich M.C.: Entangled-photon virtual-state spectroscopy. Phys. Rev. Lett. 80, 3483–3486 (1998)

    Article  ADS  Google Scholar 

  64. Lissandrin F., Saleh B.E.A., Sergienko A.V., Teich M.C.: Quantum theory of entangled-photon photoemission. Phys. Rev. B 69, 165317 (2004)

    Article  ADS  Google Scholar 

  65. Booth M.C., Saleh B.E.A., Sergienko A.V., Teich M.C.: Temperature and wavelength dependence of Fermi-tail photoemission and two-photon photoemission from multialkali semiconductors. J. Appl. Phys. 100, 023521 (2006)

    Article  ADS  Google Scholar 

  66. Saleh M.F., Saleh B.E.A., Teich M.C.: Modal, spectral, and polarization entanglement in guided-wave parametric down-conversion. Phys. Rev. A 79, 053842 (2009)

    Article  ADS  Google Scholar 

  67. Saleh M.F., Di Giuseppe G., Saleh B.E.A., Teich M.C.: Modal and polarization qubits in Ti:LiNbO 3 photonic circuits for a universal quantum logic gate. Opt. Express 18, 20475–20490 (2010)

    Article  Google Scholar 

  68. Saleh M.F., Di Giuseppe G., Saleh B.E.A., Teich M.C.: Photonic circuits for generating modal, spectral, and polarization entanglement. IEEE Photonics J. 2, 736–752 (2010)

    Article  Google Scholar 

  69. Fiorentino M., Spillane S.M., Beausoleil R.G., Roberts T.D., Battle P., Munro MW.: Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals. Opt. Express 15, 7479–7488 (2007)

    Article  ADS  Google Scholar 

  70. Nasr M.B., Minaeva O., Goltsman G.N., Sergienko A.V., Saleh B.E.A., Teich M.C.: Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors. Opt. Express 16, 15104–15108 (2008)

    Article  ADS  Google Scholar 

  71. Mohan, N., Minaeva, O., Goltsman, G.N., Saleh, M.F., Nasr, M.B., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Ultra-broadband coherence-domain imaging using parametric downvonversion and superconducting single-photon detectors at 1064 nm. Appl. Opt. 48, 4009–4017 (2009)

    Google Scholar 

  72. Booth M.C., Di Giuseppe G., Saleh B.E.A., Sergienko A.V., Teich M.C.: Polarization-sensitive quantum-optical coherence tomography. Phys. Rev. A 69, 043815 (2004)

    Article  ADS  Google Scholar 

  73. Abouraddy A.F., Toussaint K.C. Jr., Sergienko A.V., Saleh B.E.A., Teich M.C.: Ellipsometric measurements using photon pairs generated by spontaneous parametric down-conversion. Opt. Lett. 26, 1717–1719 (2001)

    Article  ADS  Google Scholar 

  74. Booth M.C., Saleh B.E.A., Teich M.C.: Polarization-sensitive quantum-optical coherence tomography: Experiment. Opt. Commun. 284, 2542–2549 (2011)

    Article  ADS  Google Scholar 

  75. Carrasco S., Torres J.P., Torner L., Sergienko A.V., Saleh B.E.A., Teich M.C.: Spatial-to-spectral mapping in spontaneous parametric downconversion. Phys. Rev. A 70, 043817 (2004)

    Article  ADS  Google Scholar 

  76. Carrasco S., Sergienko A.V., Saleh B.E.A., Teich M.C., Torres J.P., Torner L.: Spectral engineering of entangled two-photon states. Phys. Rev. A 73, 063802 (2006)

    Article  ADS  Google Scholar 

  77. Carrasco S., Nasr M.B., Sergienko A.V., Saleh B.E.A., Teich M.C., Torres J.P., Torner L.: Broadband light generation by noncollinear parametric downconversion. Opt. Lett. 31, 253–255 (2006)

    Article  ADS  Google Scholar 

  78. Mohan, N., Stojanovic, I., Karl, W.C., Saleh, B.E.A., Teich, M.C.: Compressed sensing in optical coherence tomography. In: Conchello, J.-A., Cogswell, C. J., Wilson, T., Brown, T.G. (eds.) Proceedings of SPIE 7570 (Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing), p. 75700L (2010)

  79. Pavlovich, J., Karl, W.C., Saleh, B.E.A., Sergienko, A.V., Teich, M.C.: Parameter estimation in quantum optical coherence tomography. OSA/FIO, Paper JWA53 (2005)

  80. Torres-Company V., Valencia A., Hendrych M., Torres J.P.: Cancellation of dispersion and temporal modulation with nonentangled frequency-correlated photons. Phys. Rev. A 83, 023824 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malvin Carl Teich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teich, M.C., Saleh, B.E.A., Wong, F.N.C. et al. Variations on the theme of quantum optical coherence tomography: a review. Quantum Inf Process 11, 903–923 (2012). https://doi.org/10.1007/s11128-011-0266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0266-6

Keywords

Navigation