Skip to main content
Log in

Verifiable quantum (k, n)-threshold secret sharing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a conventional quantum (k, n) threshold scheme, a trusted party shares a quantum secret with n agents such that any k or more agents can cooperate to recover the original secret, while fewer than k agents obtain no information about the secret. Is the reconstructed quantum secret same with the original one? Or is the dishonest agent willing to provide a true share during the secret reconstruction? In this paper we reexamine the security of quantum (k, n) threshold schemes and show how to construct a verifiable quantum (k, n) threshold scheme by combining a qubit authentication process. The novelty of ours is that it can provide a mechanism for checking whether the reconstructed quantum secret is same with the original one. This mechanism can also attain the goal of checking whether the dishonest agent provides a false quantum share during the secret reconstruction such that the secret quantum state cannot be recovered correctly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamir A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of National Computer Conference, pp. 313–317. AFIPS, New York (1979)

  3. Asmuth, C., Blakley, G.: Pooling, splitting and reconstituting information to overcome total failure of some channels of communication. In: Proceedings of the 1982 Symposium on Security and Privacy, pp. 156–169. IEEE Press (1982)

  4. Asmuth C., Bloom J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29, 208–210 (1983)

    Article  MathSciNet  Google Scholar 

  5. Knarnin E., Greene J., Hellman M.: On secret sharing systems. IEEE Trans. Inf. Theory 29, 35–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Benaloh J., Leichter J.: Advances generalized sharing and monotone functions. Lect. Notes Comput. Sci. 403, 27–35 (1989)

    Article  MATH  Google Scholar 

  7. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults. In: Proceedings of 26th IEEE Symposium on Foundations of Computer Science, pp. 383–395 (1985)

  8. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: Proceedings of 28th IEEE Symposium on Foundations of Computer Science, pp. 427–437 (1987)

  9. Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Proceedings of CRYPTO’91, pp. 129–139 (1991)

  10. Lin Y., Wu T.: (t,n) Threshold verifiable multi secret sharing scheme based on factorization intractability and discrete logarithm modulo a composite problems. IEEE Proc. Comput. Digit. Tech. 146(5), 264–268 (1999)

    Article  Google Scholar 

  11. Stadler M.: Publicly Verifiable Secret Sharing EUROCRYPT96, pp. 190–199. Springer, Berlin (1996)

    MATH  Google Scholar 

  12. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium of Foundation of Computer Science (1994)

  13. Nielsen M., Chuang I.: Quantum Computation and Quantum Information, pp. 28–43. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  14. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  16. Li Y.M., Zhang K.S., Peng K.C.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324, 420–424 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gottesman D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. Chau H.F.: Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys. Rev. A 66, 060302 (2002)

    Article  ADS  Google Scholar 

  19. Guo G.P., Guo G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310, 247–251 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Xiao L., Long G.L., Deng F.G., Pan J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  21. Song J., Zhang S.: Secure quantum secret sharing based on reusable GHZ states as secure carriers. Chin. Phys. Lett. 23, 1383–1386 (2006)

    Article  ADS  Google Scholar 

  22. Li B.-K., Yang Y.-G., Wen Q.-Y.: Threshold quantum secret sharing of secure direct communication. Chin. Phys. Lett. 26, 010302 (2009)

    Article  ADS  Google Scholar 

  23. Yang Y.-G., Wen Q.-Y.: Circular threshold quantum secret sharing. Chin. Phys. B 17, 419–423 (2008)

    Article  ADS  Google Scholar 

  24. Deng F.G., Li X.H. et al.: Multiparty quantum secret splitting and quantum state sharing. Phys. Lett. A 354, 190–195 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Cleve R., Gottesman D., Lo H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  26. Bandyopadhyay S.: Teleportation and secret sharing with pure entangled states. Phys. Rev. A 62, 012308 (2000)

    Article  ADS  Google Scholar 

  27. Hsu L.Y.: Quantum secret-sharing protocol based on Grover’s algorithm. Phys. Rev. A 68, 022306 (2003)

    Article  ADS  Google Scholar 

  28. Lance A.M., Symul T., Bowen W.P., Sanders B.C., Lam P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  29. Zhang Y.Q., Jin X.R., Zhang S.: Secret sharing of quantum information via entanglement swapping in cavity QED. Phys. Lett. A 341, 380–384 (2005)

    Article  ADS  MATH  Google Scholar 

  30. Zhang Z.J., Yang J., Man Z.X., Li Y.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D 33, 133 (2005)

    Article  ADS  Google Scholar 

  31. Yang Y.G., Wen Q.Y.: Threshold multiparty quantum-information splitting via quantum channel encryption. Int. J. Quantum Inf. 7, 1249 (2009)

    Article  MATH  Google Scholar 

  32. Zhang Z.J., Li Y., Man Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Deng F.G., Li X.H., Zhou H.Y., Zhang Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  34. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Erratum: Improving the security of multiparty quantum secret sharing against Trojan horse attack [Phys. Rev. A 72, 044302(2005)]. Phys. Rev. A 73, 049901 (2005)

    Article  Google Scholar 

  35. Zhang Z.J., Man Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zhang Z.J., Liu Y.M., Fang M., Wang D.: Multiparty quantum secret sharing scheme of classical messages by swapping qudit-state entanglement. Int. J. Mod. Phys. C 18, 1885 (2007)

    Article  ADS  MATH  Google Scholar 

  37. Deng F.G., Zhou H.Y., Long G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337, 329–334 (2005)

    Article  ADS  MATH  Google Scholar 

  38. Sun Y., Wen Q.Y., Zhu F.C.: Robust multiparty quantum secret sharing against participant forcible manipulation. Commun. Theor. Phys. 54, 89–92 (2010)

    Article  ADS  MATH  Google Scholar 

  39. Lin S., Wen Q.Y., Qin S.J., Zhu F.C.: Multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 282, 4455–4459 (2009)

    Article  ADS  Google Scholar 

  40. Sun Y., Wen Q.Y., Gao F., Chen X.B., Zhu F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)

    Article  ADS  Google Scholar 

  41. Wang T.Y., Wen Q.Y., Chen X.B., Guo F.Z., Zhu F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)

    Article  ADS  Google Scholar 

  42. Wang T.Y., Wen Q.Y., Gao F., Lin S., Zhu F.C.: Cryptanalysis and improvement of multiparty quantum secret sharing schemes. Phys. Lett. A 373, 65–68 (2008)

    Article  ADS  MATH  Google Scholar 

  43. Guo F.Z., Qin S.J., Gao F., Lin S., Wen Q.Y., Zhu F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445–448 (2010)

    Article  ADS  Google Scholar 

  44. Sun Y., Wen Q.Y., Zhu F.C.: Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt. Commun. 283, 181–183 (2010)

    Article  ADS  Google Scholar 

  45. Lin S., Wen Q.Y., Liu X.F.: Cryptanalysis and improvement of quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations. Chin. Phys. Lett. 26, 120307 (2009)

    Article  ADS  Google Scholar 

  46. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: A special attack on the multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 5472–5474 (2008)

    Article  ADS  Google Scholar 

  47. Lin S., Wen Q.Y., Gao F., Zhu F.C.: Improving the security of multiparty quantum secret sharing based on the improved Bostrom-Felbinger protocol. Opt. Commun. 281, 4553–4554 (2008)

    Article  ADS  Google Scholar 

  48. Qin S.J., Gao F., Wen Q.Y., Zhu F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101–103 (2006)

    Article  ADS  MATH  Google Scholar 

  49. Li Q., Long D.Y., Chan W.H., Qiu D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process. 10, 97–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Curty M., Santos D.J., Pérez E., García-Fernández P.: Qubit authentication. Phys. Rev. A 66, 022301 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, YG., Jia, X., Wang, HY. et al. Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf Process 11, 1619–1625 (2012). https://doi.org/10.1007/s11128-011-0323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0323-1

Keywords

Navigation