Skip to main content
Log in

Thermal quantum discord and classical correlations in a two-qubit Ising model under a site-dependent magnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the thermal quantum discord and classical correlations in a two-qubit Ising model interacting with a site-dependent external magnetic field. Systematic study of all correlations is performed for various values of the system’s temperature, and the magnetic field magnitude and direction on each site. Our results reveal interesting findings as regrowth regions of the classical and quantum correlations. Moreover unexpected bahavior as for example increase of the quantum correlations with the increase of the anisotropy of the applied magnetic fields for specific values of the external parameters is reported. By comparing our quantum discord data with the entanglement of formation, we have concluded that the major source of quantum correlations is the entanglement. Overall, we have found that the independent control of each spin site by external fields is a very practical and robust way of achieving significant quantum discord useful in quantum computation and information proccesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ollivier H., Zurek W.H.: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  2. Henderson L., Vedral V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Datta A., Shaji A., Caves C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  4. Lanyon B.P., Barbieri M., Almeida M.P., White A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  5. Ali M., Rau A.R.P., Alber G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  6. Brodutch, A., Terno, D.R.: Entanglement, discord, and the power of quantum computation. Phys. Rev. A 83, 010301(R) (2011)

  7. Luo S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  8. Chen Y.X., Li S.W., Yin Z.: Quantum correlations in a clusterlike system. Phys. Rev. A 82, 052320 (2010)

    Article  ADS  Google Scholar 

  9. Hassan A., Lari B., Joag P.: Thermal quantum and classical correlations in a two-qubit XX model in a nonuniform external magnetic field. J. Phys. A Math. Theor. 43, 485302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Yuan J.B., Kuang L.M., Liao J.Q.: Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. J. Phys. B At. Mol. Opt. Phys. 43, 165503 (2010)

    Article  ADS  Google Scholar 

  11. Hao X., Ma C.L., Sha J.Q.: Decoherence of quantum discord in an asymmetric-anisotropy spin system. J. Phys. A Math. Theor. 43, 425302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Sun Z., Lu X.M., Song L.J.: Quantum discord induced by a spin chain with quantum phase transition. J. Phys. B At. Mol. Opt. Phys. 43, 215504 (2010)

    Article  ADS  Google Scholar 

  13. Lu X.-M., Ma J., Xi Z., Wang X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  14. Galve F., Giorgi G.L., Zambrini R.: Maximally discordant mixed states of two qubits. Phys. Rev. A 83, 012102 (2011)

    Article  ADS  Google Scholar 

  15. Girolami D., Adesso G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  16. Datta A., Flammia S.T., Caves C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  17. Lanyon B.P., Barbieri M., Almeida M.P., White A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  18. Werlang T., Souza S., Fanchini F.F., Villas Boas C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  19. Arnesen M.C., Bose S., Vedral V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  20. Wang X.G.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  21. Gunlycke D., Kendon V.M., Vedral V., Bose S.: Thermal concurrence mixing in a one-dimensional Ising model. Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  22. Zhou L., Song H.S., Guo Y.Q., Li C.: Enhanced thermal entanglement in an anisotropic Heisenberg XYZ chain. Phys. Rev. A 68, 024301 (2003)

    Article  ADS  Google Scholar 

  23. Sun Y., Chen Y.G., Chen H.: Thermal entanglement in the two-qubit Heisenberg XY model under a nonuniform external magnetic field. Phys. Rev. A 68, 044301 (2003)

    Article  ADS  Google Scholar 

  24. Yeo Y.: Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain. Phys. Rev. A 66, 062312 (2002)

    Article  ADS  Google Scholar 

  25. Terzis, A.F., Paspalakis, E.: Entanglement in a two-qubit Ising model under a site-dependent external magnetic field. e-print arXiv: quant-ph/0407230

  26. Terzis A.F., Paspalakis E.: Entanglement in a two-qubit Ising model under a site-dependent external magnetic field. Phys. Lett. A 333, 438 (2004)

    Article  ADS  MATH  Google Scholar 

  27. Asoudeh M., Karimipour V.: Thermal entanglement of spins in an inhomogeneous magnetic field. Phys. Rev. A 71, 022308 (2005)

    Article  ADS  Google Scholar 

  28. Zhang G.F., Li S.S.: Thermal entanglement in a two-qubit Heisenberg XXZ spin chain under an inhomogeneous magnetic field. Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  29. Kheirandish F., Akhtarshenas S.J., Mohammadi H.: Effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

  30. Guo J.L., Song H.S.: Entanglement and teleportation through a two-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction. Eur. J. Phys. D 56, 265 (2010)

    Article  ADS  Google Scholar 

  31. Rigolin G.: Thermal entanglement in the two-qubit Heisenberg XYZ model. Int. J. Quantum Inf. 2, 393 (2004)

    Article  MATH  Google Scholar 

  32. Kamta G.L., Starace A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  33. Sarandy M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  34. Werlang T., Rigolin G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  35. Werlang T., Trippe C., Ribeiro G.A.P., Rigolin G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys.Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  36. Maziero J., Guzman H.C., Celeri L.C., Sarandy M.S., Serra R.M.: Quantum and classical thermal correlations in the XY spin-1/2 chain. Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  37. Ciliberti L., Rossignoli R., Canosa N.: Quantum discord in finite XY chains. Phys. Rev. A 82, 042316 (2010)

    Article  ADS  MATH  Google Scholar 

  38. Guo J.L., Mi Y.J., Zhang J., Song H.S.: Thermal quantum discord of spins in an inhomogeneous magnetic field. J. Phys. B At. Mol. Opt. Phys. 44, 065504 (2011)

    Article  ADS  Google Scholar 

  39. Liu B.-Q., Shao B., Li J.-G., Zou J., Wu L.-A.: Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii-Moriya interaction. Phys. Rev. A 83, 052112 (2011)

    Article  ADS  Google Scholar 

  40. Makhlin Y., Schoen G., Shnirman A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  41. Hamieh S., Kobes R., Zaraket H.: Positive-operator-valued measure optimization of classical correlations. Phys. Rev. A 70, 052325 (2004)

    Article  ADS  Google Scholar 

  42. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  44. Feldman, E.B., Zenchuk, A.I.: Asymmetry of bipartite quantum discord. e-print arXiv: quant-ph/1103.3104

  45. Sachdev S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F. Terzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terzis, A.F., Androvitsaneas, P. & Paspalakis, E. Thermal quantum discord and classical correlations in a two-qubit Ising model under a site-dependent magnetic field. Quantum Inf Process 11, 1931–1950 (2012). https://doi.org/10.1007/s11128-011-0345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0345-8

Keywords

Navigation