Skip to main content
Log in

Construction of four-qubit quantum entanglement for SI (S = 3/2, I = 3/2) spin system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In quantum information processing, spin-3/2 electron or nuclear spin states are known as two-qubit states. For SI (S = 3/2, I = 3/2) spin system, there are 16 four-qubit states. In this study, first, four-qubit entangled states are obtained by using the matrix representation of Hadamard and CNOT logic gates. By considering 75As@C60 molecule as SI (S = 3/2, I = 3/2) spin system, four-qubit entangled states are also obtained by using the magnetic resonance pulse sequences of Hadamard and CNOT logic gates. Then, it is shown that obtained entangled states can be transformed into each other by the transformation operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, UK (2001)

    Google Scholar 

  2. DiVincenzo D.P.: Quantum computation. Science 270, 255–261 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Loyd S.: Quantum-mechanical computers. Sci. Am. 273, 140–145 (1995)

    Article  Google Scholar 

  4. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  6. Furman G.B., Meerovich V.M., Sokolovsky V.L.: Entanglement in nuclear quadrupole resonance. Hyperfine Interact 198, 153–159 (2010)

    Article  ADS  Google Scholar 

  7. Bethune D.S., Johnson R.D., Salem J.R., Devries M.S., Yannoni C.S.: Atoms in carbon cages—the structure and properties of endohedral fullerenes. Nature 366, 123–128 (1993)

    Article  ADS  Google Scholar 

  8. Wakabayashi T.: Fullerene C 60: a possible molecular computer. In: Nakahara, M., Ota, Y., Rahimi, R., Kondo, Y., Tada-Umezaki, M. (eds) Molecular Realizations of Quantum Computing 2007, pp. 163–192. World Scientific Publishing Co. Pte. Ltd. Kinki Univ., Japan (2009)

    Chapter  Google Scholar 

  9. Heidebrecht A., Mende J., Mehring M.: Quantum state engineering with spins. Fortschr. Phys. 54, 788–803 (2006)

    Article  MathSciNet  Google Scholar 

  10. Feng M., Twamley J.: Selective pulse implementation of two-qubit gates for spin-3/2-based fullerene quantum-information processing. Phys. Rev. A 70, 032318 (2004)

    Article  ADS  Google Scholar 

  11. Ju C., Suter D., Du J.: Two-qubit gates between noninteracting qubits in endohedral-fullerene-based quantum computation. Phys. Rev. A 75, 012318 (2007)

    Article  ADS  Google Scholar 

  12. Mehring M., Scherer W., Weidinger A.: Pseudoentanglement of spin states in the multilevel 15 N@C60 system. Phys. Rev. Lett. 93, 206603 (2004)

    Article  ADS  Google Scholar 

  13. Harneit W.: Fullerene-based electron-spin quantum computer. Phys. Rev. A 65, 032322 (2002)

    Article  ADS  Google Scholar 

  14. Suter D., Lim K.: Scalable architecture for spin-based quantum computers with a single type of gate. Phys. Rev. A 65, 052309 (2002)

    Article  ADS  Google Scholar 

  15. Mehring M., Mende J., Scherer W.: Entanglement between an electron and a nuclear spin 1/2. Phys. Rev. Lett. 90, 153001 (2003)

    Article  ADS  Google Scholar 

  16. Scherer W., Mehring M.: Entagled electron and nuclear spin states in 15 N@C 60: density matrix tomography. J. Chem. Phys. 128, 052305 (2008)

    Article  ADS  Google Scholar 

  17. Yang W.L., Xu Z.Y., Wei H., Feng M., Suter D.: Quantum–information–processing architecture with endohedral fullerenes in a carbon nanotube. Phys. Rev. A 81, 032303 (2010)

    Article  ADS  Google Scholar 

  18. Sato K., Nakazawa S., Rahimi R.D., Nishida S., Ise T., Shimoi D., Toyota K., Morita Y., Kitagawa M., Carl P., Höfner P., Takui T.: Quantum computing using pulse-based electron-nuclear double resonance (ENDOR): molecular spin-qubits. In: Nakahara, M., Ota, Y., Rahimi, R., Kondo, Y., Tada-Umezaki, M. (eds) Molecular Realizations of Quantum Computing 2007, pp. 59–162. World Scientific Publishing Co. Pte. Ltd. Kinki Univ., Japan (2009)

    Google Scholar 

  19. Twamley J.: Quantum–cellular–automata quantum computing with endohedral fullerenes. Phys. Rev. A 67, 052318 (2003)

    Article  ADS  Google Scholar 

  20. Ju C., Suter D., Du J.: Two-qubit gates between noninteracting qubits in endohedral-fullerene-based quantum computation. Phys. Rev. A 75, 012318 (2007)

    Article  ADS  Google Scholar 

  21. Rahimi R., Sato K., Shiomi D., Takui T.: Quantum information processing as studied by molecule-based pulsed ENDOR spectroscopy. In: Graham, A.W. (eds) Modern Magnetic Resonance, pp. 643–650. Springer, Netherlands (2006)

    Google Scholar 

  22. Oliveira I.S., Bonagamba T.J., Sarthour R.S., Freitas J.C.C., deAzevede E.R.: NMR Quantum Information Processing. Elsevier, Netherlands (2007)

    Google Scholar 

  23. Bonk F.A., deAzevedo E.R., Sarthour R.S., Bulnes J.D., Freitas J.C.C., Guimaraes A.P., Oliveira I.S., Bonagamba T.J.: Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state tomography. J. Magn. Reson. 175, 226–234 (2005)

    Article  ADS  Google Scholar 

  24. Kesel A.R., Ermakov V.L.: Multiqubit spin. JETP Lett. 70, 61–65 (1999)

    Article  ADS  Google Scholar 

  25. Gün A., Şaka İ., Gençten A.: Construction and application of four-qubit SWAP logic gate in NMR quantum computing. Int. J. Quantum Inf. 9, 779–790 (2011)

    Article  MATH  Google Scholar 

  26. BelBruno J.J.: Computational study of N@C60, P@C60, and As@C60. Fuller. Nanotub. Carbon Nanostruct. 10, 23–35 (2002)

    Article  Google Scholar 

  27. Liu X.S., Long G.L., Tong D.M., Li F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  28. Vega A.J.: CP/MAS of quadrupolar S = 3/2 nuclei. Solid State Nuclear Magn. Reson. 1, 17–32 (1992)

    Article  Google Scholar 

  29. Vega A.J.: MAS NMR spin locking of half-integer quadrupolar nuclei. J. Magn. Reson. 96, 50–68 (1992)

    Google Scholar 

  30. Kao H.M., Grey C.P.: INEPT experiments involving quadrupolar nuclei in solids. J. Magn. Reson. 133, 313–323 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azmi Gençten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gün, A., Çakmak, S. & Gençten, A. Construction of four-qubit quantum entanglement for SI (S = 3/2, I = 3/2) spin system. Quantum Inf Process 12, 205–215 (2013). https://doi.org/10.1007/s11128-012-0367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0367-x

Keywords

Navigation