Skip to main content
Log in

A scheme for generating a multi-photon NOON state based on cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme for generating the two-mode maximally path-entangled state of multi-photon, i.e., the so-called NOON state, through use of cavity QED techniques is proposed. In the present scheme, the entanglement between two spatial modes is established by guiding a laser pulse through a single atom cavity firstly, and then is transferred to the entanglement of the fields of the two cavities. The multi-photon state is generated in either one of the cavities via the strong atom-light interaction stimulated by the laser pulse adiabatically. Consequently, the desired optical NOON state is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bollinger J.J., Itano W.M., Wineland D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996)

    Article  ADS  Google Scholar 

  2. Ou Z.Y.: Fundamental quantum limit in precision phase measurement. Phys. Rev. A 55, 2598–2609 (1997)

    Article  ADS  Google Scholar 

  3. Boto A.N., Kok P., Abrams D.S., Braunstein S.L., Williams C.P., Dowling J.P.: Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett. 85, 2733–2736 (2000)

    Article  ADS  Google Scholar 

  4. Hofmann H.F.: Generation of highly nonclassical n-photon polarization states by superbunching at a photon bottleneck. Phys. Rev. A 70, 023812(1-7) (2004)

    Article  ADS  Google Scholar 

  5. Shafiei F., Srinivasan P., Ou Z.Y.: Generation of three-photon entangled state by quantum interference between a coherent state and parametric down-conversion. Phys. Rev. A 70, 043803 (2004)

    Article  ADS  Google Scholar 

  6. Wang H., Kobayashi T.: Phase measurement at the Heisenberg limit with three photons. Phys. Rev. A 71, 021802 (2005)

    Article  ADS  Google Scholar 

  7. Hong C.K., Ou Z.Y., Mandel L.: Measurement of subpicosecond time intervals between two photons by inerference. Phys. Rev. Lett. 59, 2044–2046 (1987)

    Article  ADS  Google Scholar 

  8. Mitchell M.W., Lundeen J.S., Steinberg A.M.: Super-resolving phase measurements with a multiphoton entangled state. Nature (London) 429, 161–164 (2004)

    Article  ADS  Google Scholar 

  9. Walther P., Pan J.-W., Aspelmeyer M., Ursin R., Gasparoni S., Zeilinger A.: Heisenber-limit interferometry with four-wave mixers operating in a nonlinear regime. Nature (London) 429, 158 (2004)

    Article  ADS  Google Scholar 

  10. Gerry C.C.: Generation of maximally entangled photonic states with a quantum-optical Fredkin gate. Phys. Rev. A 61, 043811 (2000)

    Article  ADS  Google Scholar 

  11. Gerry C.C., Campos R.A.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. A 64, 063814 (2001)

    Article  ADS  Google Scholar 

  12. Kapale K.T., Dowling J.P.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99, 053602 (2007)

    Article  ADS  Google Scholar 

  13. Islam, R., Ikram, M., Saifl, F.: Engineering maximally entangled N-photon NOON field states using an atom interferometer based on Bragg regime cavity QED. J. Phys. B. At. Mol. Opt. Phys. 40, 1359–1368 (2007)

    Article  ADS  Google Scholar 

  14. Saif, F., Islam, R., Khosa, A.H.: An enginering two-mode field NOON state in cavity QED. J. Phys. B. At. Mol. Opt. Phys. 43, 015501 (2010)

    Article  ADS  Google Scholar 

  15. Kuhn A., Hennrich M., Bondo T., Rempe G.: Controlled generation of single photons from a strongly coupled atom-cavity system. Appl. Phys. B 69, 373–377 (1999)

    Article  ADS  Google Scholar 

  16. Brown K.R., Dani K.M., Stamper-Kurn D.M., Whaley K.B.: Deterministic optical Fock-state generation. Phys. Rev. A 67, 043818 (2003)

    Article  ADS  Google Scholar 

  17. Kuhn A., Hennrich M., Rempe G.: Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002)

    Article  ADS  Google Scholar 

  18. Walls D.F., Milburn G.J.: Quantum Optics. Springer, Berlin (1994)

    MATH  Google Scholar 

  19. Wang B., Duan L.-M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304 (2007)

    Article  ADS  Google Scholar 

  20. Kimble H.J.: Strong interactions of single atoms and photons in cavity QED. Phys. Scripta. T76, 127–137 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, XQ., Zhu, J., He, G. et al. A scheme for generating a multi-photon NOON state based on cavity QED. Quantum Inf Process 12, 449–457 (2013). https://doi.org/10.1007/s11128-012-0383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0383-x

Keywords

Navigation