Skip to main content
Log in

On the construction of stabilizer codes with an arbitrary binary matrix

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper proposes a simple framework for constructing a stabilizer code with an arbitrary binary matrix. We define a relation between A 1 and A 2 of a binary check matrix A = (A 1|A 2) associated with stabilizer generators of a quantum error-correcting code. Given an arbitrary binary matrix, we can derive a pair of A 1 and A 2 by the relation. As examples, we illustrate two kinds of stabilizer codes: quantum LDPC codes and quantum convolutional codes. By the nature of the proposed framework, the stabilizer codes covered in this paper belong to general stabilizer (non-CSS) codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly, S.A., Grassl, M., Klappenecker, A., Röetteler, M., Sarvepalli, P.K.: Quantum convolutional BCH codes. In: Canadian Workshop on Information Theory, pp. 180–183 (2007)

  2. Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: Primitive quantum BCH codes over finite fields. In: IEEE International Symposium on Information Theory, pp. 1114–1118 (2006)

  3. Brun, T., Devetak, I., Hsieh, M.H.: Catalytic quantum error correction. http://arxiv.org/abs/quant-ph/0608027 (2006)

  4. Brun T., Devetak I., Hsieh M.H.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 78(3), 405–408 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Camara, T., Ollivier, H., Tillich, J.P.: A class of quantum LDPC codes: construction and performances under iterative decoding. In: IEEE International Symposium on Information Theory, pp. 811–815. IEEE Information Theory Society (2007)

  8. Fujiwara Y., Clark D., Vandendriessche P., Boech M.D., Tonchev V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82(4), 042,338 (2010)

    Article  Google Scholar 

  9. Gottesman D.: Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54(3), 1862–1868 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  10. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology (1997)

  11. Grassl, M., Beth, T.: Quantum BCH codes. http://arxiv.org/abs/quant-ph/9910060 (1999)

  12. Grassl, M., Geiselmann, W., Beth, T.: Quantum Reed-Solomon codes. In: Proceedings Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-13), pp. 231–244. Springer, Berlin (1999)

  13. Hagiwara, M., Imai, H.: Quantum quasi-cyclic LDPC codes. In: IEEE International Symposium on Information Theory, pp. 806–810 (2007)

  14. Houshmand, M., Hosseini-Khayat, S., Wilde, M.M.: Minimal-memory, non-catastrophic, polynomial-depth quantum convolutional encoders. http://arxiv.org/abs/1105.0649 (2011)

  15. Hsieh M.H., Brun T.A., Devetak I.: Entanglement-assisted quantum quasicyclic low-density parity-check codes. Phys. Rev. A 79(3), 032304 (2009)

    Article  Google Scholar 

  16. Hsieh M.H., Devetak I., Brun T.: General entanglement-assted quantum error-correcting codes. Phys. Rev. A 76(6), 062,313 (2007)

    Article  Google Scholar 

  17. Hsieh M.H., Yen W.T., Hsu L.Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57(3), 1761–1769 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hu, X.Y., Eleftheriou, E., Arnold, D.M.: Progressive edge-growth tanner graphs. In: Global Telecommunications Conference, vol. 2, pp. 995–1001 (2001)

  19. Hu X.Y., Eleftheriou E., Arnold D.M.: Regular and irregular progressive edge-growth tanner graphs. IEEE Trans. Inf. Theory 51(1), 386–398 (2005)

    Article  MathSciNet  Google Scholar 

  20. Mackay D.J.C., Mitchison G., McFadden P.L.: Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory 50(10), 2315–2330 (2004)

    Article  MathSciNet  Google Scholar 

  21. Moon T.K.: Error Correction Coding : Mathematical Methods and Algorithms. John Wiley & Sons, Hoboken, NJ (2005)

    Book  Google Scholar 

  22. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York, NY (2000)

    MATH  Google Scholar 

  23. Ollivier H., Tillich J.P.: Desription of a quantum convolutional code. Phys. Rev. Lett. 91, 177,902 (2003)

    Article  Google Scholar 

  24. Ollivier, H., Tillich, J.P.: Quantum convolutional codes: fundamentals. http://arxiv.org/abs/quant-ph/0401134 (2004)

  25. Postol, M.S.: A proposed quantum low density parity check code. http://arxiv.org/abs/quant-ph/0108131

  26. Poulin D., Chung Y.: On the iterative decoding of sparse quantum codes. Quantum Inf. Comput. 8(10), 987–1000 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Poulin D., Tillich J.P., Ollivier H.: Quantum serial turbo codes. IEEE Trans. Inf. Theory 55(6), 2776–2798 (2009)

    Article  MathSciNet  Google Scholar 

  28. Renes, J.M., Dupuis, F., Renner, R.: Efficient quantum polar coding. http://arxiv.org/abs/1109.3195 (2011)

  29. Tan P., Li J.: Efficient quantum stabilizer codes: LDPC and LDPC-convolutional constructions. IEEE Trans. Inf. Theory 56(1), 476–491 (2010)

    Article  MathSciNet  Google Scholar 

  30. Wilde, M.M.: Quantum coding with entanglement. Ph.D. thesis, University of Southern California (2008)

  31. Wilde M.M., Brun T.A.: Entanglement-assisted quantum convolutional coding. Phys. Rev. A 81(4), 042,333 (2010)

    Article  MathSciNet  Google Scholar 

  32. Wilde, M.M., Guha, S.: Polar codes for degradable quantum channels. http://arxiv.org/abs/1109.5346 (2011)

  33. Wilde, M.M., Hsieh, M.H.: Entanglement boosts quantum turbo codes. In: IEEE International Symposium on Information Theory, pp. 445–449 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moongu Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, Y., Choi, BS. & Jeon, M. On the construction of stabilizer codes with an arbitrary binary matrix. Quantum Inf Process 12, 467–479 (2013). https://doi.org/10.1007/s11128-012-0394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0394-7

Keywords

Navigation