Skip to main content
Log in

Using non-ideal gates to implement universal quantum computing between uncoupled qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In many physical systems, when implementing quantum gate operations unavoidable global and relative phases occur as by-products due to the internal structure of the governing Hamiltonian. To correct, additional phase rotation gates are used, which increases the computational overhead. Here, we show how these phase by-products can actually be used to our advantage by using them to implement universal quantum computing between qubits not directly coupled to each other. The gate operations, CNOT, Toffoli, and swap gates, require much less computational overhead than present schemes, and are achieved with fidelity greater than 99%. We then present a linear nearest-neighbor architecture that takes full advantage of the phase by-products, and we show how to implement gates from a universal set efficiently in this layout. In this scheme gate operations are realized by only varying a single control parameter per data qubit, and the ability to tune couplings is not required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LNN:

Linear nearest neighbor

CNOT:

Controlled-NOT

References

  1. Nielson M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  2. Makhlin Y., Schon G., Shnirman A.: Quantum state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)

    Article  ADS  Google Scholar 

  3. Cirac J.J., Zoller P.: A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  Google Scholar 

  4. Gershenfeld N.A., Chuang I.L.: Bulk spin resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wei L.F., Liu Y., Nori F.: Quantum computation with Josephson qubits using a current-biased information bus. Phys. Rev. B 71, 134506.1–134506.12 (2005)

    ADS  Google Scholar 

  6. Gagnebin P.K., Skinner S.R., Behrman E.C., Steck J.E., Zhou Z., Han S.: Quantum gates using a pulsed bias scheme. Phys. Rev. A 72, 042311 (2005)

    Article  ADS  Google Scholar 

  7. Majer J.B., Paauw F.G., ter Haar A.C.J., Harmans C.J.P.M., Mooij J.E.: Spectroscopy on two coupled superconducting flux qubits. Phys. Rev. Lett. 94, l090501 (2005)

    Article  ADS  Google Scholar 

  8. Kane B.E.: A silicon-based nuclear spin quantum computer. Nat. Lond. 393, 133–136 (1998)

    Article  ADS  Google Scholar 

  9. Hollenberg L.C.L., Dzurak A.S., Wellard C., Hamilton A.R., Reilly D.J., Milburn G.J., Clark R.G.: Charge-based quantum computing using single donors in semiconductors. Phys. Rev. B 69, 113301–113304 (2004)

    Article  ADS  Google Scholar 

  10. Pachos J.K., Knight P.L.: Quantum computation with a one-dimensional optical lattice. Phys. Rev. Lett. 91, 107902–107905 (2003)

    Article  ADS  Google Scholar 

  11. Friesen M., Rugheimer P., Savage D.E., Lagally M.G., van der Weide D.W., Joynt R., Eriksson M.A.: Practical design and simulation of silicon-based quantum-dot qubits. Phys. Rev. B 67, 121301–121304(R) (2003)

    Article  ADS  Google Scholar 

  12. Ladd T.D., Goldman J.R., Yamaguchi F., Yamamoto Y.: All-silicon quantum computer. Phys. Rev. Lett. 89, 017901–017904 (2002)

    Article  ADS  Google Scholar 

  13. Novais E., Castro Neto A.H.: Nuclear spin qubits in a pseudospin quantum chain. Phys. Rev. A 69, 062312–062317 (2004)

    Article  ADS  Google Scholar 

  14. Tian L., Zoller P.: Quantum computing with atomic Josephson-junction arrays. Phys. Rev. A 68, 042321–042330 (2003)

    Article  ADS  Google Scholar 

  15. van der Ploeg S.H.W., Izmalkov A., van den Brink A.M., Hübner U., Grajcar M., Il’ichev E., Meyer H.-G., Zagoskin A.M.: Controllable coupling of superconducting flux qubits. Phys. Rev. Lett. 98, 057004–057007 (2007)

    Article  ADS  Google Scholar 

  16. Lantz J., Wallquist M., Shumeiko V.S., Wendin G.: Josephson junction qubit network with current-controlled interaction. Phys. Rev. B 70, 140507–140510(R) (2004)

    Article  ADS  Google Scholar 

  17. Stock R., James D.F.V.: Scalable, high-speed measurement-based quantum computer using trapped ions. Phys. Rev. Lett. 102, 170501–170504 (2009)

    Article  ADS  Google Scholar 

  18. Van Meter R., Ladd T.D., Fowler A.G., Yamamoto Y.: Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quantum Inf. 8, 295–323 (2010)

    Article  Google Scholar 

  19. Maslov D.: Linear depth stabilizer and quantum Fourier transformation circuits with no auxiliary qubits in finite neighbor quantum architectures. Phys. Rev. A 76, 052310–052317 (2007)

    Article  ADS  Google Scholar 

  20. Shende V.V., Bullock S.S., Markov I.L.: Synthesis of quantum-logic circuits. IEEE Trans. CAD 25(6), 1000–1010 (2006)

    Google Scholar 

  21. Cheung, D., Maslov, D., Severini, S.: Translation techniques between quantum circuit architectures. In: Workshop on Quantum Information Processing (2007, December)

  22. Takahashi Y., Kunihiro N., Ohta K.: The quantum Fourier transform on a linear nearest neighbor architecture. Quantum Inf. Comput. 7, 383–391 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Kutin, S.A.: Shor’s algorithm on a nearest-neighbor machine. In: Asian Conference on Quantum Information Science (2007)

  24. Choi B.-S., Van Meter R.: On the effect of interaction distance on quantum addition circuits. ACM J. Emerg. Technol. Comput. Syst. 7(3), 11 (2011)

    Article  Google Scholar 

  25. Fowler A.G., Hill C.D., Hollenberg L.C.L.: Quantum error correction on linear nearest neighbor qubit arrays. Phys. Rev. A 69, 042314.1–042314.4 (2004)

    Article  ADS  Google Scholar 

  26. Möttönen M., Vartiainen J.J.: Decompositions of General Quantum Gates. Ch. 7 in Trends in Quantum Computing Research. NOVA Publishers, New York (2006)

    Google Scholar 

  27. Chakrabarti A., Sur-Kolay S.: Nearest neighbor based synthesis of quantum Boolean circuits. Eng. Lett. 15, 356–361 (2007)

    Google Scholar 

  28. Khan M.H.A.: Cost reduction in nearest neighbor based synthesis of quantum Boolean circuits. Eng. Lett. 16, 1–5 (2008)

    ADS  Google Scholar 

  29. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to convert arbitrary quantum circuits to ones on a linear nearest neighbor architecture. In: International Conference on Quantum, Nano and Micro Technologies, pp. 26–33 (2009)

  30. Fedorov A., Macha P., Feofanov A.K., Harmans C.J.P.M., Mooij J.E.: Tuned transition from quantum to classical for macroscopic quantum states. Phys. Rev. Lett. 106, 170404–170407 (2011)

    Article  ADS  Google Scholar 

  31. Zhang J., Whaley K.B.: Generation of quantum logic operations from physical Hamiltonians. Phys. Rev. A 71, 052317–052329 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  32. Berman G.P., Doolen G.D., Holm G.D., Tsifrinovich V.I.: Quantum computing on a class of one-dimensional Ising systems. Phys. Lett. A 193, 444–450 (1999)

    Article  ADS  Google Scholar 

  33. Burkard G., Loss D., DiVincenzo D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999)

    Article  ADS  Google Scholar 

  34. Yamamoto T., Pashkin Y.A., Astafiev O., Nakamura Y., Tsai J.S.: Demonstration of conditional gate operation using superconducting charge qubits. Nature 425, 941–944 (2003)

    Article  ADS  Google Scholar 

  35. Lantz, J., Wallquist, M., Shumeiko, V.S., Wendin, G.: Josephson junction qubit network with current-controlled interaction. Phys. Rev. B 70, 140507–140510 (R) (2004)

    Google Scholar 

  36. Kumar, P., Skinner, S.R., Daraeizadeh, S.: Reduced Hamiltonian technique for gate design in strongly coupled quantum systems. In: The 5th International Conference on Quantum Nano and Micro Technologies, Nice, pp. 28–34 (2011)

  37. Kumar P., Skinner S.R.: Universal quantum computing in linear nearest neighbor architectures. Quantum Inf. Comput. 11, 0300–0312 (2011)

    MathSciNet  Google Scholar 

  38. Zhou Z., Han S.: A unified approach to realize universal quantum gates in a coupled two-qubit system with fixed always-on couplings. Phys. Rev. B 73, 104521–104524 (2006)

    Article  ADS  Google Scholar 

  39. Orlando T.P., Mooij J.E., Tian L., van der Wal C., Levitov L.S., Lloyd S., Mazo J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15398–15413 (1999)

    Article  ADS  Google Scholar 

  40. Fowler A.G., Thompson W.F., Yan Z.: Long-range coupling and scalable architecture for superconducting flux qubits. Phys. Rev. B 76, 174507–174513 (2007)

    Article  ADS  Google Scholar 

  41. Groszkowski P., Fowler A.G., Motzoi F., Wilhelm F.K.: Tunable coupling between three qubits as a building block for a superconducting quantum computer. Phys. Rev. B 84, 144516–144522 (2011)

    Article  ADS  Google Scholar 

  42. Ferber J., Wilhelm M.: Efficient creation of multi-partite entanglement in flux qubits. Nanotechnology 21, 274015 (2010)

    Article  ADS  Google Scholar 

  43. Serban I., Solano E., Wilhelm F.K.: Phase-theory for dispersive detectors of superconducting qubits. Phys. Rev. B 76, 104510–104516 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preethika Kumar.

Additional information

This material is based upon work supported, in part, by the National Science Foundation under Award No. EPS-0903806 and matching support from the State of Kansas through Kansas Technology Enterprise Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Skinner, S.R. Using non-ideal gates to implement universal quantum computing between uncoupled qubits. Quantum Inf Process 12, 973–996 (2013). https://doi.org/10.1007/s11128-012-0444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0444-1

Keywords

Navigation