Skip to main content
Log in

Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a (t, m)−(s, n) threshold quantum secret sharing protocol between multiparty (m members in group 1) and multiparty (n members in group 2) using a sequence of Greenberger–Horne–Zeilinger (GHZ) states, which is useful and efficient when the parties of communication are not all present. In the protocol, Alice prepares a sequence of GHZ states in one of the eight different states and sends the last two particles to the first agent while other members encode their information on the sequence via unitary transformations. Finally the last member in group 2 measures the qubits. It is shown that this scheme is safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hillery M., Buzěk V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Xiao L., Long G.L., Deng F.G., Pan J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  3. Feng-Li Y., Ting G., You-Cheng L.: Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations. Chin. phys. lett. 25, 1187–1190 (2008)

    Article  ADS  Google Scholar 

  4. Zhang Z.J., Li Y., Man Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  5. Wang T., Wen Q., Chen X., Guo F., Zhu F.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)

    Article  ADS  Google Scholar 

  6. Gan G.: Multiparty quantum secret sharing using two-photon three-dimensional bell states. Commun. Theor. Phys. 52, 421–424 (2009)

    Article  ADS  MATH  Google Scholar 

  7. YuGuang Y., QiaoYan W.: Threshold quantum secret sharing between multi-party and multi-party. Sci. China Ser. G Phys. Mech. Astron. 51, 1308–1315 (2008)

    Article  ADS  MATH  Google Scholar 

  8. Bao-Kui L., Yu-Guang Y., Qiao-Yan W.: Threshold quantum secret sharing of secure direct communication. Chin. Phys. Lett. 26, 010302 (2009)

    Article  Google Scholar 

  9. Wang J., Zhang Q., Tang C.J.: Multiparty quantum secret sharing of secure direct communication using teleportation. Commun. Theor. Phys. 47, 454–458 (2007)

    Article  ADS  MATH  Google Scholar 

  10. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  11. Zhang Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60–66 (2005)

    Article  ADS  MATH  Google Scholar 

  12. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  13. Zhang Z.J., Man Z.X., Li Y.: Improving Wjciks eavesdropping attack on the pingpong protocol. Phys. Lett. A 333, 46–50 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Deng F.G., Long G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Fattahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehkordi, M.H., Fattahi, E. Threshold quantum secret sharing between multiparty and multiparty using Greenberger–Horne–Zeilinger state. Quantum Inf Process 12, 1299–1306 (2013). https://doi.org/10.1007/s11128-012-0471-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0471-y

Keywords

Navigation