Skip to main content
Log in

Enhancing quantum discord in superconducting qubit systems by a controllable electromagnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the dynamics of quantum correlations of the systems consisting of two non-interacting superconducting qubits interacting with their own data bus and common data bus, where the qubits are driven by a controllable time-dependent electromagnetic field. We investigate how the time-dependent electromagnetic field affects the dynamics of the quantum discord and the three-partite entanglement of the systems. It is found that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution and the quantum discord between two qubits can be increased by adjusting the time-dependent electromagnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki R., Horodecki P., Horodecki M., Horodecki K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Meyer D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85(9), 2014–2017 (2000)

    Article  ADS  Google Scholar 

  4. Datta A., Shaji A., Caves C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100(5), 050502 (2008)

    Article  ADS  Google Scholar 

  5. Ollivier H., Zurek W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2002)

    Article  ADS  Google Scholar 

  6. Zurek W.H.: Quantum discord and maxwells demons. Phys. Rev. A 67(1), 012320 (2003)

    Article  ADS  Google Scholar 

  7. Horodecki M., Horodecki P., Horodecki R., Oppenheim J., Sen(De) A., Sen U., Synak-Radtke B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71(6), 062307 (2005)

    Article  ADS  Google Scholar 

  8. Shabani A., Lidar D.A.: Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102(10), 100402 (2009)

    Article  ADS  Google Scholar 

  9. Datta A., Gharibian S.: Signatures of nonclassicality in mixed-state quantum computation. Phys. Rev. A 79(4), 042325 (2009)

    Article  ADS  Google Scholar 

  10. Werlang T., Souza S., Fanchini F.F., Villas Boas C.J.: Robustness of quantum discord to sudden death. Phys. Rev. A 80(2), 024103 (2009)

    Article  ADS  Google Scholar 

  11. Wang B., Xu Z.-Y., Chen Z.-Q., Feng M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81(1), 014101 (2010)

    Article  ADS  Google Scholar 

  12. Makhlin Y., Schön G., Shnirman A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73(2), 357–400 (2001)

    Article  ADS  Google Scholar 

  13. Clarke J., Wilhelm F.K.: Superconducting quantum bits. Nature (London) 453, 1031 (2008)

    Article  ADS  Google Scholar 

  14. Chen M.-Y., Tu M.W.Y., Zhang W.-M.: Entangling two superconducting lc coherent modes via a superconducting flux qubit. Phys. Rev. B 80(21), 214538 (2009)

    Article  ADS  Google Scholar 

  15. Majer J., Chow J.M., Gambetta J.M., Koch J., Johnson B.R., Schreier J.A., Frunzio L., Schuster D.I., Houck A.A., Wallraff A., Blais A., Devoret M.H., Girvin S.M., Schoelkopf R.J.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443 (2007)

    Article  ADS  Google Scholar 

  16. You J.Q., Tsai J.S., Nori F.: Scalable quantum computing with Josephson charge qubits. Phys. Rev. Lett. 89(19), 197902 (2002)

    Article  ADS  Google Scholar 

  17. You J.Q., Nori F.: Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 68(6), 064509 (2003)

    Article  ADS  Google Scholar 

  18. Zagoskin A.M., Grajcar M., Omelyanchouk A.N.: Selective amplification of a quantum state. Phys. Rev. A 70(6), 060301 (2004)

    Article  ADS  Google Scholar 

  19. Blais A., van den Brink A.M., Zagoskin A.M.: Tunable coupling of superconducting qubits. Phys. Rev. Lett. 90(12), 127901 (2003)

    Article  ADS  Google Scholar 

  20. Liu Y.-X., Sun C.P., Nori F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A. 74, 052321 (2006)

    Article  ADS  Google Scholar 

  21. Johansson J., Saito S., Meno T., Nakano H., Ueda M., Semba K., Takayanagi H.: Vacuum rabi oscillations in a macroscopic superconducting qubit lc oscillator system. Phys. Rev. Lett. 96(12), 127006 (2006)

    Article  ADS  Google Scholar 

  22. Zhang, Y.Q., Xu., J.B.: Entanglement control in a superconducting qubit system by an electromagnetic field. Eur. Phys. J. D. (2011). doi:10.1140/epjd/e2011-20086-3

  23. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998)

    Article  ADS  Google Scholar 

  24. Myatt C.J., Rowe M., Turchette Q.A., Itano W.M., Wineland D.J., Monroe C.: Experimental entanglement of four particles. Nature 404, 256 (2000)

    Article  ADS  Google Scholar 

  25. Seevinck M., Uffink J.: Sufficient conditions for three-particle entanglement and their tests in recent experiments. Phys. Rev. A 65, 012107 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Bo Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YQ., He, QL. & Xu, JB. Enhancing quantum discord in superconducting qubit systems by a controllable electromagnetic field. Quantum Inf Process 12, 1335–1350 (2013). https://doi.org/10.1007/s11128-012-0476-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0476-6

Keywords

Navigation