Skip to main content
Log in

Probabilistic quantum relay communication in the noisy channel with analogous space-time code

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Motivated by the space-time diversity transmission technique in wireless communications, a novel probabilistic quantum relay communication scheme in the quantum noisy channel is proposed in order to maximize the correct information transmission and the range of quantum communication, in which quantum signal sequences that carrying two-particle entangled states are transmitted from two senders to two relays and then retransmitted to the receiver after space-time encoded by relays. The quantum signal states can be restored via filtering out the channel noise with two-dimensional Bell measurements by the receiver. Analysis and discussions indicate that our scheme can increase and approximately double the range of quantum communication while not to reduce too much quantum signal-to-noise ratio, and meanwhile the security can be guaranteed under strongest collective attacks and LOCC attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hausl C., Hagenauer J.: Relay communication with hierarchical modulation. IEEE Commun. Lett. 11(1), 64–66 (2007)

    Article  Google Scholar 

  2. Tarokh V., Jafarkhani H., Calderbank A.R.: Space-time block codes from orthogonal designs. IEEE Trans. Inform. Theor. 45(5), 1456–1467 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Gisin N., Thew R.T.: Quantum communication. Nat. Photon. 1, 165–171 (2007)

    Article  ADS  Google Scholar 

  4. Briegel H.J., Dür W., Cirac J.I., Zoller P.: Quantum repeaters for communication, arXiv:quant-ph/9803056v1 20 Mar (1998)

  5. Dür W., Briegel H.J., Cirac J.I., Zoller P.: Quantum repeaters based on entanglement purification, arXiv:quant-ph/9808065v1 31 Aug (1998)

  6. Jacobs B.C., Pittman T.B., Franson J.D.: Quantum relays and noise suppression using linear optics. Phys. Rev. A 66(052307), 1–6 (2002)

    Google Scholar 

  7. Zhang A.N., Chen Y.A., Lu C.Y., Qi Zhou X., Zhao Z., Zhang Q., Yang T., Pan J.W.: Quantum-relay-assisted key distribution over high photon loss channels, arXiv:quant-ph/0508062v1, 1–12 (2005)

  8. Guo Y., Chen Z.G., Song W., Lee M.H.: A transmit diversity scheme for quantum communications. Physica Scripta 78(065402), 1–5 (2008)

    MATH  Google Scholar 

  9. Shi R.H., Shi J.J., Guo Y., Peng X.Q., Lee M.H.: Quantum MIMO communication scheme based on quantum teleportation with triplet states. Int. J. Theor. Phys. 50(8), 2334–2346 (2011)

    Article  MATH  Google Scholar 

  10. Djordjevic I.B.: Photonic implementation of quantum relay and encoders/decoders for sparse-graph quantum codes based on optical hybrid. IEEE Photon. Technol. Lett. 22(19), 1449–1451 (2010)

    Article  ADS  Google Scholar 

  11. Wang C., Ma H.Q., Jiao R.Z., Zhang Y.: An improved quantum repeater protocol using hyperentangled state purification. Eur. Phys. J. D 64, 573–578 (2011)

    Article  ADS  Google Scholar 

  12. Alamouti S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Select Areas Commun. 16(8), 1451–1458 (1998)

    Article  Google Scholar 

  13. Li Z., Xia X.G.: A simple Alamouti spaceCTime transmission scheme for asynchronous cooperative systems. IEEE Signal Process. Lett. 14(11), 804–807 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Griffiths R.B.: Quantum Channels, Kraus Operators, POVMs, Version of 4, http://quantum.phys.cmu.edu/QCQI/qitd411.pdf, qitd411, 1–18 (2010)

  15. Li X.X., Li G.F.: Static gain, optical modulation response, and nonlinear phase noise in saturated quantum-dot semiconductor optical amplifiers. IEEE J Quantum Elec. 45(5), 499–505 (2009)

    Article  ADS  Google Scholar 

  16. Wang C., Shen Y.B., Li X.H., Deng F.G., Zhang W., Long G.L.: Efficient entanglement purification for doubly entangled photon state. Sci. China. Ser. E-Technol. Sci. 52(12), 3464–3467 (2009). doi:10.1007/s11431-009-0307-x

    Article  MATH  Google Scholar 

  17. Biham E., Boyer M., Brassard G., Graaf J., Mor T.: Security of quantum key distribution against all collective attacks. Algorithmica 34, 372–388 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys. Lett. A 359, 359–365 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Dobrzanki R.D., Sen A., Sen U., Lewenstein M.: Entanglement enhances security in quantum communication. Phys. Rev. A. 80, 012311 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Vandevender A.P., Kwiat P.G.: High efficiency single photon detection via frequency up-conversion. J. Modern Opt. 51(9-10), 1433–1445 (2004)

    ADS  MATH  Google Scholar 

  21. Grangier P., Levenson J.A., Poizat J.P.: Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998). doi:10.1038/25059

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinjing Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Shi, R., Guo, Y. et al. Probabilistic quantum relay communication in the noisy channel with analogous space-time code. Quantum Inf Process 12, 1859–1870 (2013). https://doi.org/10.1007/s11128-012-0497-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0497-1

Keywords

Navigation