Skip to main content
Log in

Quantum teleportation with partially entangled states via noisy channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using a partially entangled EPR-type state as quantum channel, we investigate quantum teleportation (QT) of a qubit state in noisy environments by solving the master equation in the Lindblad form. We analyze the different influence for the partially entangled EPR-type channel and the EPR channel on the fidelity and the average fidelity of the QT process in the presence of Pauli noises. It is found that the fidelity depends on the type and the strength of the noise, and the initial state to be teleported. Moreover, the EPR channel is more robust than the partially entangled EPR-type channel against the influence of the noises. It is also found that the partially entangled EPR-type channel enables the average fidelity as a function of the decoherence parameter \(kt\) to decay with different velocities for different Pauli noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  3. Greenberger, D.M., Horne, M., Zeilinger, A.: In: Kafatos, M. (eds) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Kluwer, Dordrecht, p. 69 (1989)

  4. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  5. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 439 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  6. Chakrabarty, I.: Teleportation via a mixture of a two qubit subsystem of a N-qubit W and GHZ state. Eur. Phys. J. D 57, 265 (2010)

    Article  ADS  Google Scholar 

  7. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  8. Wang, L.-Q., Zha, X.-W.: Two schemes of teleportation one-particle state by a three-particle GHZ state. Opt. Commun. 283, 4118 (2010)

    Article  ADS  Google Scholar 

  9. Wang, X.-W., Shan, Y.-G., Xia, L.-X., Lu, M.-W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7 (2007)

    Article  ADS  MATH  Google Scholar 

  10. Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum. Inf. Process. 10, 619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  12. Li, W.-L., Li, C.-F., Guo, G.-C.: Probabilistic teleportation and entanglement matching. Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  13. Zhou, P., Li, X.-H., Deng, F.-G.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. J. Phys. A Math. Theory 40, 13121 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Grzegorz, C., Ryszard, T.: High-fidelity atomic-state teleportation protocol with non-maximally-entangled states. Phys. Rev. A 79, 042311 (2009)

    Article  Google Scholar 

  15. Cao, H.-J., Guo, Y.-Q., Song, H.-S.: Teleportation of an unknown bipartite state via non-maximally entangled two-particle state. Chin. Phys. 15, 915 (2006)

    Article  ADS  Google Scholar 

  16. Pati, A.K., Agrawal, P.: Probabilistic teleportation and quantum operation. J. Opt. B Quantum Semiclass. Opt. 6, S844 (2004)

    Article  ADS  Google Scholar 

  17. Banaszek, K.: Fidelity balance in quantum operations. Phys. Rev. Lett. 86, 1366 (2001)

    Article  ADS  Google Scholar 

  18. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  19. Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403, 515 (2000)

    Article  ADS  Google Scholar 

  20. Zhao, Z., Chen, Y.-A., Zhang, A.-N., Yang, T., Briege, H.J., Pan, J.-W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54 (2004)

    Article  ADS  Google Scholar 

  21. Nielsen, M.A., Knill, E., Laflamme, R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52 (1998)

    Article  ADS  Google Scholar 

  22. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., Lancaster, G.P.T., Körber, T.W., Becher, C., Schmidt-Kaler, F., James, D.F.V., Blatt, R.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  23. Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., Jost, J.D., Knill, E., Langer, C., Leibfried, D., Ozeri, R., Wineland, D.J.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  25. Scully, M.O., Zubairy, M.S.: Quantum Opt. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  26. Hu, M.-L.: Teleportation of the one-qubit state with environment-disturbed recovery operations. Eur. Phys. J. D 64, 531 (2011)

    Article  ADS  Google Scholar 

  27. Hu, M.-L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375, 2140 (2011)

    Article  ADS  Google Scholar 

  28. Yeo, Y., Kho, Z.W., Wang, L.-X.: Effects of Pauli channels and noisy quantum operations on standard teleportation. EPL 86, 40009 (2009)

    Article  ADS  Google Scholar 

  29. Hu, M.-L.: Teleportation of the one-qubit state in decoherence environments. J. Phys. B At. Mol. Opt. Phys. 44, 025502 (2011)

    Article  ADS  Google Scholar 

  30. Jung, E., Hwang, M.R., Park, D.K., Son, J.W., Tamaryan, S.: Mixed-state entanglement and quantum teleportation through noisy channels. J. Phys. A Math. Theory 41, 385302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  32. Jung, E., Hwang, M.R., Ju, Y.H., Kim, M.S., Yoo, S.K., Kim, H., Park, D.K., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  33. Ishizaka, S.: Quantum channel locally interacting with environment. Phys. Rev. A 63, 034301 (2001)

    Article  ADS  Google Scholar 

  34. Hao, X., Zhang, R., Zhu, S.-Q.: Average fidelity of teleportation in quantum noise channel. Commun. Theory Phys. 45, 802 (2006)

    Article  ADS  Google Scholar 

  35. Hu, X.-Y., Gu, Y., Gong, Q.-H., Guo, G.-C.: Noise effect on fidelity of two-qubit teleportation. Phys. Rev. A 81, 054302 (2010)

    Article  ADS  Google Scholar 

  36. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  37. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417 (2003)

    Article  ADS  Google Scholar 

  38. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619 (1998)

    Article  ADS  Google Scholar 

  39. Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York, p. 175 (1984)

  40. Yang, C.-P., Chu, S.-I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via Entanglement. Phys. Rev. A 70, 022329 (2004)

    Article  ADS  Google Scholar 

  41. Ozdemir, S.K., Bartkiewicz, K., Liu, Y.-X., Miranowicz, A.: Teleportation of qubit states through dissipative channels: conditions for surpassing the no-cloning limit. Phys. Rev. A 76, 042325 (2007)

    Article  ADS  Google Scholar 

  42. Han, X.-P., Liu, J.-M.: Effects of phase damping on controlled teleportation of a qubit by a GHZ state. Commun. Theory Phys. 49, 895 (2008)

    Article  ADS  Google Scholar 

  43. Pan, J.-W., Chen, Z.-B., Lu, C.-Y., Weinfurter, H., Zeilinger, A., Zukowski, M.: Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their helpful suggestions. J.M. Liu also thanks Prof. Chui-Ping Yang for his useful discussions. This work was supported by the National Natural Science Foundation of China under grant nos. 11174081, 11034002, 11104075, 11134003, 11247024 and 51001078, the National Basic Research Program of China under grant nos. 2011CB921602 and 2012CB821302, the Open Fund from the SKLPS of ECNU, and the Natural Science Foundation of Zhejiang Province under Grant No Y6110578.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, HQ., Liu, JM., Feng, SS. et al. Quantum teleportation with partially entangled states via noisy channels. Quantum Inf Process 12, 2671–2687 (2013). https://doi.org/10.1007/s11128-013-0555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0555-3

Keywords

Navigation