Skip to main content
Log in

Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme is proposed to deterministically generate a two atoms entangled state and a multiple atoms W state in two coupled cavities by one step. In the scheme, the populations of cavities and atoms excited are negligible under certain conditions with an adiabatic passage along a dark state. Furthermore, the interaction time needs not to be controlled exactly and keeps unchanged with the increasing of the number of qubits. In consideration that only one of the atoms needs to be operated, the realization in experiment can be relatively easier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics (Long Island City, NY) 1, 195–200 (1965)

    Google Scholar 

  2. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1142 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  4. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303(1–4) (2005)

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153–2156 (1997)

    Article  ADS  Google Scholar 

  7. Lo, H.K., Popesu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63, 022301(1–16) (2001)

  8. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314(1–12) (2000)

  9. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  10. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314(1–11) (2002)

  11. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Kimble, H.J.: The quantum internet. Nature 453, 1023–1030 (2008)

    Article  ADS  Google Scholar 

  14. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Turchette, Q.A., Wood, C.S., King, B.E., Myatt, C.J., Leibfried, D., Itano, W.M., Moroe, C., Wineland, D.J.: Deterministic entanglememt of two trapped ions. Phys. Rev. Lett. 81, 3631–3634 (1998)

    Article  ADS  Google Scholar 

  16. Liu, J.M., Wang, Y.Z.: Remote preparation of a two-particle entangled state. Phys. Lett. A 316, 159–167 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Hagley, E., Maitre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J.M., Haroche, S.: Generation of Einstein–Podolsky–Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997)

    Article  ADS  Google Scholar 

  18. Osnaghi, S., Bertet, P., Auffieves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902(1–4) (2001)

  19. Rauschenbeutel, A., Bertet, P., Osnaghi, S., Nogues, G., Btune, M., Raimond, J.M., Haroche, S.: Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment. Phys. Rev. A 64, 050301(R)(1–4) (2001)

    Google Scholar 

  20. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  21. Zheng, S.B.: Scalable generation of multi-atom W states with a single resonant interaction. J. Opt. B Quantum Semiclass. Opt. 7, 10–13 (2005)

    Article  ADS  Google Scholar 

  22. Chen, R.X., Shen, L.T.: Tripartite entanglement of atoms trapped in coupled cavities via quantum Zeno dynamics. Phy. Lett. A 375, 3840–3844 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Law, C.K., Eberly, J.H.: Arbitrary control of a quantum electromagetic field. Phys. Rev. Lett. 76, 1055–1058 (1996)

    Article  ADS  Google Scholar 

  24. Kuhn, A., Hennrich, M., Bondo, T., Rempe, G.: Controlled generation of single photons from a strongly coupled atom–cavity system. Appl. Phys. B 69, 373–377 (1999)

    Article  ADS  Google Scholar 

  25. Zheng, S.B.: Nongeomentric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation. Phys. Rev. Lett. 95, 080502(1–4) (2005)

  26. Song, J., Xia, Y., Song, H.S.: Entangled state generation via adiabatic passage in two distant cavities. J. Phys. B Atom Mol. Opt. Phys. 40, 4503–4511 (2007)

    Article  ADS  Google Scholar 

  27. Yang, R.C., Li, G., Zhang, T.C.: Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics. Quantum Inf. Process. 12, 493–504 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  28. Armani, D.K., Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Ultra-high-Q toroid microcavity on a chip. Nature (London) 421, 925–928 (2003)

    Article  ADS  Google Scholar 

  29. Bayindir, M., Temelkuran, B., Ozbay, E.: Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2140–2143 (2000)

    Article  ADS  Google Scholar 

  30. Wallraff, A., Schuster, D.L., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162–167 (2004)

    Article  ADS  Google Scholar 

  31. Ogden, C.D., Irish, E.K., Kim, M.S.: Dynamics in a coupled-cavity array. Phys. Rev. A 78, 063805(1–9) (2008)

  32. Zhong, Z.R., Lin, X., Zhang, B., Yang, Z.B.: Deterministic multi-atom GHZ states generation in a coupled cavity system with the assistance of strong classical fields. Phys. Scr. 86, 055008(1–4) (2012)

  33. Song, J., Xia, Y., Song, H.S.: One-step generation of cluster state by adiabatic passage in coupled cavities. Appl. Phys. Lett. 96, 071102(1–3) (2010)

  34. Angelakis D.G., Kay, A.: Weaving light-matter qubits into a one way quantum computer. New J. Phys. 10, 023012(1–10) (2008)

  35. Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501(1–4) (2007)

  36. Boes, S., Angelakis, D.G., Burgarth, D.: Transfer of a polaritonic qubit throught a coupled cavity array. J. Mod. Opt. 54, 2307–2314 (2007)

    Article  ADS  Google Scholar 

  37. Kastoryano, M.J., Reiter, F., Sørensen, A.S.: Dissipative preparation of entanglement in optical cavities. Phys. Rev. Lett. 106, 090502(1–4) (2011)

  38. Lu, M., Xia, Y., Song, J., Song, H.S.: Driving three atoms into a singlet state in an optical cavity via adiabatic passage of a dark state. J. Phys. B Atom Mol. Opt. Phys. 46, 015502(1–6) (2013)

  39. Hao, S.Y., Xia, Y., Song, J., An, N.B.: One-step generation of multiatom Greenberger–Horne–Zeilinger states in separate cavities via adiabatic passage. J. Opt. Soc. Am. B 30, 468–474 (2013)

    Article  ADS  Google Scholar 

  40. Zheng, S.B.: Generation of Greenberger–Horne–Zeilinger states for multiple atoms trapped in separated cavities. Eur. Phys. J. D 54, 719–722 (2009)

    Article  ADS  Google Scholar 

  41. Spollane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fiber–taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902(1–4) (2003)

  42. Spollane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817(1–10) (2005)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant numbers 11047122 and 11105030, the Natural Science Foundation of Fuzhou University of China under Grant numbers XRC-0976 and 2010-XQ-28, the funds from Education Department of Fujian Province of China under Grant numbers JA11005, JA10009 and JA10039, the National Natural Science Foundation of Fujian Province of China under Grant numbers 2010J01006 and 2011J0101, the Foundation of Ministry of Education of China under Grant number 212085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, YH., Xia, Y. & Song, J. Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage. Quantum Inf Process 12, 3771–3783 (2013). https://doi.org/10.1007/s11128-013-0630-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0630-9

Keywords

Navigation