Skip to main content
Log in

Multiparty controlled quantum secure direct communication based on quantum search algorithm

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this study, a new controlled quantum secure direct communication (CQSDC) protocol using the quantum search algorithm as the encoding function is proposed. The proposed protocol is based on the multi-particle Greenberger–Horne–Zeilinger entangled state and the one-step quantum transmission strategy. Due to the one-step transmission of qubits, the proposed protocol can be easily extended to a multi-controller environment, and is also free from the Trojan horse attacks. The analysis shows that the use of quantum search algorithm in the construction of CQSDC appears very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  3. Pang, C.-Y., Zhou, R.-G., Ding, C.-B., Hu, B.-Q.: Quantum search algorithm for set operation. Quantum Inf. Process. 12(1), 481–492 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Lomonaco, J., Samuel, J., Kauffman, L.: Is grover’s algorithm a quantum hidden subgroup algorithm? Quantum Inf. Process. 6(6), 461–476 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sun, J., Lu, S., Liu, F.: Partial adiabatic quantum search algorithm and its extensions. Quantum Inf. Process. 12(8), 2689–2699 (2013)

    Google Scholar 

  6. Korepin, V., Grover, L.: Simple algorithm for partial quantum search. Quantum Inf. Process. 5(1), 5–10 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  8. Wang, J., Zhang, Q., Tang, C-j: Multiparty controlled quantum secure direct communication using greenberger–horne–zeilinger state. Opt. Commun. 266(2), 732–737 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  9. Wang, C., Hao, L., Song, S.Y., Long, G.L.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 08(03), 443–450 (2010)

    Article  Google Scholar 

  10. Tseng, H.-Y., Tsai, C.-W., Hwang, T.: Controlled deterministic secure quantum communication based on quantum search algorithm. Int. J. Theor. Phys. 51(8), 2447–2454 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  12. Wang, C., Deng, F.-G., Li, Y.-S., Liu, X.-S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  13. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle green–horne–zeilinger state. Opt. Commun. 253(1–3), 15–20 (2005)

    Article  ADS  Google Scholar 

  14. Li, X.-H., Li, C.-Y., Deng, F.G., Zhou, P., Liang, Y.-J., Zhou, H.-Y.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149 (2007)

    Article  ADS  Google Scholar 

  15. Deng, F.-G., Li, X.-H., Li, C.-Y., Zhou, P., Zhou, H.-Y.: Quantum secure direct communication network with einstein-podolsky-rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  17. Long, G.-L., Deng, F.-G., Wang, C., Li, X.-H., Wen, K., Wang, W.-Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  18. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  19. Hwang, T., Li, C.-M., Lee, N.-Y.: Secure direct communication using deterministic bb84 protocol. Int. J. Mod. Phys. C 19(4), 625–635 (2008)

    Article  MATH  ADS  Google Scholar 

  20. Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  21. Yang, C.-W., Hwang, T.: Improved qsdc protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Xia, Y.-J., Man, Z.-X.: Controlled quantum n -party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. Chen, X.-B., Wang, T.-Y., Du, J.-Z., Wen, Q.-Y., Zhu, F.-C.: Controlled quantum secure direct communication with quantum encryption. Int. J. Quantum Inf. 6(3), 543–551 (2008)

    Article  MATH  Google Scholar 

  24. Xiu, X.-M., Dong, L., Gao, Y.-J., Chi, F.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282(2), 333–337 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  25. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z-j: Improving the security of multiparty quantum secret sharing against Trojan Horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  26. Cai, Q.-Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  MATH  ADS  Google Scholar 

  27. Chong, S.-K., Luo, Y.-P., Hwang, T.: On arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 284(3), 893–895 (2011)

    Article  ADS  Google Scholar 

  28. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  29. Li, C.-Y., Li, X.-H., Deng, F.-G., Zhou, P., Liang, Y.-J., Zhou, H.-Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896 (2006)

    Article  ADS  Google Scholar 

  30. Li, C.-Y., Zhou, H.-Y., Wang, Y., Deng, F.-G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049 (2005)

    Article  ADS  Google Scholar 

  31. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  Google Scholar 

  32. Gao, F., Guo, F., Wen, Q., Zhu, F.: Comparing the efficiencies of different detect strategies in the ping-pong protocol. Sci. China Ser. G Phys. Mech. Astron. 51(12), 1853–1860 (2008)

    Article  ADS  Google Scholar 

  33. Wang, T.-Y., Wen, Q.-Y., Zhu, F.-C.: Secure authentication of classical messages with single photons. Chin. Phys. B 18(8), 3189 (2009)

    Article  ADS  Google Scholar 

  34. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12(1), 685–697 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on quantum blind signature based on two-state vector formalism. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments, which greatly enhanced the clarity of this paper. This research is partially supported by the National Science Council, Taiwan, R.O.C., under the Contract No. NSC 100-2221-E-006-152-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, SH., Hwang, T. Multiparty controlled quantum secure direct communication based on quantum search algorithm. Quantum Inf Process 12, 3791–3805 (2013). https://doi.org/10.1007/s11128-013-0636-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0636-3

Keywords

Navigation