Skip to main content
Log in

Comment on “efficient and feasible quantum private comparison of equality against the collective amplitude damping noise”

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, protocols of quantum private comparison of equality (QPCE) are investigated. We study the security of previous QPCE protocols with a semi-honest third party (TP) from the viewpoint of secure multiparty computation and show that QPCE protocol (Chen et al. Quantum Inf Process 2012) has an obvious security flaw. A vicious inside attacker impersonating TP or the compromised TP colluding with a dishonest inside player can steal other player’s secret successfully. An improved efficient and feasible QPCE protocol is proposed. In our improved scheme, only the two players can deduce the results of comparisons based on their shared key, and others will learn no information of the comparison results, even the length of secrets. The cost of communication is also be optimized. Our scheme can resist various kinds of attacks from both the outside eavesdroppers and the inside players, even the TP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fagin, R., Naor, M., Winkler, P.: Comparing information without leaking it. Commun ACM 39, 77–85 (1996)

    Article  Google Scholar 

  2. Cachin C (1999) Efficient private bidding and auctions with an oblivious third party. In: Proceedings of the 6th ACM conference on computer and communications, security, pp 120–127

  3. Fabrice, B., Berry, S., et al.: A fair and efficient solution to the socialist millionaires’ problem. Discret Appl Math 111, 23–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Qin, J., Zhang, Z.F., Feng, D.G., Li, B.: A protocol of comparing information without leaking. J Softw 15, 421–427 (2004)

    MATH  Google Scholar 

  5. Crépeau C, Gottesman D, Smith A (2002) Secure multi-party quantum computation. In: Proceedings of the 34th annual ACM symposium on theory of computing, pp 643–652. ACM, New York

  6. Ben-Or M, Crépeau C, Gottesman D, Hassidim A, Smith A. (2006) Secure multiparty quantum computation with (only) a strict honest majority. In: Proceedings of 47th annual IEEE symposium on the foundations of computer science. IEEE, Los Alamitos, pp 249–260

  7. Yao AC (1982) Protocols, for secure computations. In Proceedings of 23rd IEEE symposium on foundations of computer science (FOCS’ 82). IEEE computer society, Washington

  8. Yao ACC (1986) How to generate and exchange secrets. In: IEEE 27th annual symposium on foundations of computer science (FOCS 1986)

  9. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J Phys A Math Theory 42, 055305 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt Commun 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  11. Liu, W., Wang, Y.B., Tao, J.Z.: An efficient protocol for the quantum private comparison of equality with W state. Opt Commun 284, 1561–1565 (2011)

    Article  ADS  Google Scholar 

  12. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf Process 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, W., Wang, Y.B., Tao, J.Z., Cao, Y.Z.: A protocol for the quantum private comparison of equality with \(\chi \)-type state. Int J Theory Phys 51, 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boudot, F., Schoenmakers, B., Traor’e, J.: A fair and efficient solution to the socialist millionaires’problem. Discret Appl Math (Special Issue on Coding and Cryptology) 111(1–2), 23–36 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Lo, H.K.: Insecurity of quantum secure computations. Phys Rev A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  16. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys Scr 80(6), 065002 (2009)

    Article  ADS  MATH  Google Scholar 

  17. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using \(\chi \)-type state. Int J Theory Phys 51(6), 1953–1960 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int J Theory Phys 51(4), 1187–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt Commun 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  20. Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int J Theor Phys 52(1), 212–218 (2013). doi:10.1007/s10773-012-1321-5

    Google Scholar 

  21. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf Process 12(2), 1077–1088 (2013). doi:10.1007/s11128-012-0454-z

  22. Yang, Y.G., Xia, J., Jia, X., et al.: New quantum private comparison protocol without entanglement. Int J Quantum Inf 6(10), 1250065 (2012)

    Google Scholar 

  23. Chen XB, Su Y, Niu X-X, Yang Y-X (2012) Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf Process. doi:10.1007/s11128-012-0505-5

  24. Li, L., Qiu, D.: Local entanglement is not necessary for perfect discrimination between unitary operations acting on two qudits by local operations and classical communication. Phys Rev A 77, 032337 (2008)

    Article  ADS  Google Scholar 

  25. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys Rev A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  26. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt Commun 282, 3382–3385 (2009)

    Article  ADS  Google Scholar 

  27. Yang, Y.G., Chai, H.P., Wang, Y., et al.: Fault tolerant quantum secret sharing against collective-amplitude-dampling noise. Sci China Phys Mech Astron 54(9), 1619–1624 (2011)

    Article  ADS  Google Scholar 

  28. Bennett CH, Brassard G (1984) Quantum cryptography: public-key distribution and coin tossing. In: IEEE international conference on computers, systems and signal processing. New York, Bangalore, India, pp 175–179

  29. Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, T., Perdigues, J., Sodnik, Z., Kurtsiefer, C., Rarity, J.G.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys Rev Lett 98, 10504 (2007)

    Article  ADS  Google Scholar 

  30. Yang YG, Xia J, Jia X, Zhang H (2012) Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf Process. doi:10.1007/s11128-012-0433-4

  31. Gao, F., Qin, S., Wen, Q., Zhu, F.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf Comput 7, 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A 65, 0323021 (2002)

    Article  Google Scholar 

  33. Li, C., Song, H.S., Zhou, L., Wu, C.F.: A random quantum key distribution achieved by using Bell states.J Opt B Quantum Semiclass Opt 5(2), 155–157 (2003)

    Article  ADS  Google Scholar 

  34. Song, D.: Secure key distribution by swapping quantum entanglement. Phys Rev A 69(3), 034301 (2004)

    Article  ADS  Google Scholar 

  35. Namiki, R., Hirono, T.: Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. Phys Rev A 74, 032302 (2006)

    Article  ADS  Google Scholar 

  36. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100 % qubit efficiency. IET Proc Inf Secur 1, 43–45 (2007)

    Article  Google Scholar 

  37. Gan, G.: Quantum key distribution scheme with high efficiency. Commun Theory Phys 51(5), 820–822 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Chen, X.B., Wen, Q.Y., Guo, F.Z., Sun, Y., Xu, G., Zhu, F.C.: Controlled quantum secure direct communication with w state. Int J Quantum Inf 6, 899–906 (2008)

    Article  MATH  Google Scholar 

  39. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61170270, 61003290, 61170221, 61100205); the Specialized Research Fund for the Doctoral Program of Higher Education(Grant Nos. 20091103120014, 20090005110010); Beijing Natural Science Foundation(Grant Nos. 4122008); the ISN open Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Hua Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YH., Shi, WM. & Yang, YG. Comment on “efficient and feasible quantum private comparison of equality against the collective amplitude damping noise”. Quantum Inf Process 13, 573–585 (2014). https://doi.org/10.1007/s11128-013-0674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0674-x

Keywords

Navigation