Skip to main content
Log in

Higher dimensional bipartite composite systems with the same density matrix: separable, free entangled, or PPT entangled?

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Given the density matrix of a bipartite quantum state, could we decide whether it is separable, free entangled, or PPT entangled? Here, we give a negative answer to this question by providing a lot of concrete examples of \(16 \times 16\) density matrices, some of which are well known. We find that both separability and distillability are dependent on the decomposition of the density matrix. To be more specific, we show that if a given matrix is considered as the density operators of different composite systems, their entanglement properties might be different. In the case of \(16 \times 16\) density matrices, we can look them as both \(2 \otimes 8\) and \(4 \otimes 4\) bipartite quantum states and show that their entanglement properties (i.e., separable, free entangled, or PPT entangled) are completely irrelevant to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landau, L.: Das Dämpfungsproblem in der Wellenmechanik. Z. Phys. 45, 430–441 (1927)

    Article  ADS  MATH  Google Scholar 

  2. von Neumann, J.: Thermodynamik quantenmechanischer Gesamtheiten. Gött. Nachr. 245, 273–291 (1927)

    Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Kuś, M., Życzkowski, K.: Geometry of entangled states. Phys. Rev. A 63, 032307 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  6. Knill, E.: Separability from spectrum. http://qig.itp.uni-hannover.de/qiproblems/15

  7. Hildebrand, R.: Positive partial transpose from spectra. Phys. Rev. A 76, 052325 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  8. Verstraete, F., Audenaert, K., De Moor, B.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001)

    Article  ADS  Google Scholar 

  9. Thirring, W., Bertlmann, R.A., Köhler, P., Narnhofer, H.: Entanglement or separability: the choice of how to factorize the algebra of a density matrix. Eur. Phys. J. D 64, 181–196 (2011)

    Article  ADS  Google Scholar 

  10. Zanardi, P.: Virtual quantum subsystems. Phys. Rev. Lett. 87, 077901 (2001)

    Article  ADS  Google Scholar 

  11. Zanardi, P., Lidar, D.A., Lloyd, S.: Quantum tensor product structures are observable induced. Phys. Rev. Lett. 92, 060402 (2004)

    Article  ADS  Google Scholar 

  12. Barnum, H., Knill, E., Ortiz, G., Somma, R., Viola, L.: A subsystem-independent generalization of entanglement. Phys. Rev. Lett. 92, 107902 (2004)

    Article  ADS  Google Scholar 

  13. Harshman, N.L., Ranade, K.S.: Observables can be tailored to change the entanglement of any pure state. Phys. Rev. A 84, 012303 (2011)

    Article  ADS  Google Scholar 

  14. de la Torre, A.C., Goyeneche, D., Leitao, L.: Entanglement for all quantum states. Eur. J. Phys. 31, 325–332 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Zanardi, P., Zalka, C., Faoro, L.: Entangling power of quantum evolutions. Phys. Rev. A 62, 030301(R) (2000)

    Article  MathSciNet  ADS  Google Scholar 

  16. Zanardi, P.: Entanglement of quantum evolutions. Phys. Rev. A 63, 040304(R) (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Linden, N., Smolin, J.A., Winter, A.: Entangling and disentangling power of unitary transformations are not equal. Phys. Rev. Lett. 103, 030501 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Clarisse, L., Ghosh, S., Severini, S., Sudbery, A.: The disentangling power of unitaries. Phys. Lett. A 365, 400–402 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Xu, F., Cheng, W.: Higher dimensional bipartite composite systems with the same density matrix: separable, free entangled, or bound entangled? In: Proceedings of the 9th Asian Conference on Quantum Information Science, pp. 99–100, Nanjing, China (2009)

  20. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Rudolph, O.: Further results on the cross norm criterion for separability. Quantum Inf. Process. 4, 219–239 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193–202 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Benatti, F., Floreanini, R., Piani, M.: Quantum dynamical semigroups and non-decomposable positive maps. Phys. Lett. A 326, 187–198 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Kraus, B., Cirac, J.I., Karnas, S., Lewenstein, M.: Separability in 2 \(\times \) \(N\) composite quantum systems. Phys. Rev. A 61, 062302 (2000)

  26. Breuer, H.-P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)

    Article  ADS  Google Scholar 

  27. Breuer, H.-P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847–11860 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Dür, W., Cirac, J.I., Lewenstein, M., Bruß, D.: Distillability and partial transposition in bipartite systems. Phys. Rev. A 61, 062313 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  29. Cheng, W.: Comment on: “A class of bound entangled states” [Phys. Lett. A 352 (2006) 321]. Phys. Lett. A 364, 517–521 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Fei, S.-M., Li-Jost, X., Sun, B.-Z.: A class of bound entangled states. Phys. Lett. A 352, 321–325 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333–339 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Tura, J., Augusiak, R., Hyllus, P., Kuś, M., Samsonowicz, J., Lewenstein, M.: Four-qubit entangled symmetric states with positive partial transpositions. Phys. Rev. A 85, 060302(R) (2012)

    Article  ADS  Google Scholar 

  33. Cheng W.: Different systems, same matrix representation, similar properties. In: 2008 IEEE Congress on Evolutionary Computation, pp. 136–137. Hong Kong, China (2008) (We think that there are some errors in the proof in Ref. 33. As shown as in present paper, Benatti-Floreanini-Piani 2 \(\otimes \) 8 quantum state is separable, not bound entangled.)

  34. Ha, K.-C.: Range criterion for separability. Phys. Rev. A 82, 064103 (2010)

    Article  ADS  Google Scholar 

  35. Rana, S., Parashar, P.: Entanglement is not a lower bound for geometric discord. Phys. Rev. A 86, 030302(R) (2012)

    Article  ADS  Google Scholar 

  36. Rana, S., Parashar, P.: Geometric discord and measurement-induced nonlocality for well known bound entangled states. Quantum Inf. Process. 12, 2523–2534 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  38. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

  39. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  40. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  41. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899–6905 (2001)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 60803028 and 61202045), the Fundamental Research Funds for the Central Universities (No. ZYGX2010X014), and the Science and Technology Foundation of Southwest Petroleum University (No. 2012XJZ034). We are very grateful to the anonymous reviewers for their valuable comments and suggestions which help us to improve the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, W., Xu, F., Li, H. et al. Higher dimensional bipartite composite systems with the same density matrix: separable, free entangled, or PPT entangled?. Quantum Inf Process 13, 849–862 (2014). https://doi.org/10.1007/s11128-013-0696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0696-4

Keywords

Navigation