Skip to main content
Log in

Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Here in this study we propose an efficient entanglement concentration protocol (ECP) for separate nitrogen-vacancy (NV) centers, resorting to the single-photon input–output process of the NV center and microtoroidal resonator coupled system. In the proposed ECP, one ancillary single-photon is prepared and passed through a hybrid quantum circuit. By measuring the photon under the suitable polarization basis, maximally entangled state between the separate NV centers can be obtained with a certain success probability. The solid entanglement will be preserved during the process, which can be iterated several rounds to obtain an optimal total success probability. We also discuss the experimental feasibility of the protocol by considering current technologies, and we believe that the protocol is useful in the future applications of long-distance quantum communication and distributed quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  2. Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  4. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  5. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  6. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  7. Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)

    Article  ADS  Google Scholar 

  8. Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343 (2003)

    Article  ADS  Google Scholar 

  9. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  10. Wang, C., Zhang, Y., Jin, G.S.: Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inf. Comput. 11, 988 (2011)

    MATH  MathSciNet  Google Scholar 

  11. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  12. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  13. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  14. Du, F.F., Li, T., Ren, B.C., Wei, H.R., Deng, F.G.: Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1399 (2012)

    Article  ADS  Google Scholar 

  15. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 272 (2010)

    MATH  MathSciNet  Google Scholar 

  16. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  17. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547 (2014)

    Article  ADS  Google Scholar 

  18. Feng, X.L., Kwek, L.C., Oh, C.H.: Electronic entanglement purification scheme enhanced by charge detections. Phys. Rev. A 71, 064301 (2005)

    Article  ADS  Google Scholar 

  19. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement concentration for electrons with charge detection. Phys. Lett. A 373, 1823 (2009)

    Article  ADS  MATH  Google Scholar 

  20. Ren, B.C., Wei, H.R., Li, T., Hua, M., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Inf. Process. 13, 825 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Peng, Z.H., Zou, J., Liu, X.J., Xiao, Y.J., Kuang, L.M.: Atomic and photonic entanglement concentration via photonic Faraday rotation. Phys. Rev. A 86, 034305 (2012)

    Article  ADS  Google Scholar 

  22. Cao, C., Wang, C., He, L.Y., Zhang, R.: Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime. Opt. Express 21, 4093 (2013)

    Article  ADS  Google Scholar 

  23. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)

    Article  ADS  Google Scholar 

  24. Li, T., Yang, G.J., Deng, F.G.: Entanglement distillation for quantum communication network with atomic-ensemble memories. Opt. Express 22, 23897 (2014)

    Article  ADS  Google Scholar 

  25. Jelezko, F., Gaebel, T., Popa, I., Domhan, M., Gruber, A., Wrachtrup, J.: Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys. Rev. Lett. 93, 130501 (2004)

    Article  ADS  Google Scholar 

  26. Gaebel, T., Domhan, M., Popa, I., Wittmann, C., Neumann, P., Jelezko, F., Rabeau, J.R., Stavrias, N., Greentree, A.D., Prawer, S., Meijer, J., Twamley, J., Hemmer, P.R., Wrachtrup, J.: Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408–413 (2006)

    Article  Google Scholar 

  27. Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)

    Article  ADS  Google Scholar 

  28. Jiang, L., Hodges, J.S., Maze, J.R., Maurer, P., Taylor, J.M., Cory, D.G., Hemmer, P.R., Walsworth, R.L., Yacoby, A., Zibrov, A.S., Lukin, M.D.: Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae. Science 326, 267 (2009)

    Article  ADS  Google Scholar 

  29. Wolters, J., Schell, A.W., Kewes, G., Nusse, N., Schoengen, M., Doscher, H., Hannappel, T., Lochel, B., Barth, M., Benson, O.: Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010)

    Article  ADS  Google Scholar 

  30. Young, A., Hu, C.Y., Marseglia, L., Harrison, J.P., OBrien, J.L., Rarity, J.G.: Cavity enhanced spin measurement of the ground state spin of an NV center in diamond. New J. Phys. 11, 013007 (2009)

    Article  ADS  Google Scholar 

  31. Buckley, B.B., Fuchs, G.D., Bassett, L.C., Awschalom, D.D.: Spin-light coherence for single-spin measurement and control in diamond. Science 330, 1212 (2010)

    Article  ADS  Google Scholar 

  32. Yang, W.L., Xu, Z.Y., Feng, M., Du, J.F.: Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. New J. Phys. 12, 113039 (2010)

    Article  ADS  Google Scholar 

  33. Li, P.B., Gao, S.Y., Li, F.L.: Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator. Phys. Rev. A 83, 054306 (2011)

    Article  ADS  Google Scholar 

  34. Li, P.B., Gao, S.Y., Li, H.R., Ma, S.L., Li, F.L.: Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers. Phys. Rev. A 85, 042306 (2012)

    Article  ADS  Google Scholar 

  35. Wang, C., Zhang, Y., Jiao, R.Z., Jin, G.S.: Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express 21, 19252 (2013)

    Article  ADS  Google Scholar 

  36. Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)

    Article  ADS  Google Scholar 

  37. Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sorensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730–734 (2010)

    Article  ADS  Google Scholar 

  38. Dayan, B., Parkins, A.S., Aoki, T., Ostby, E.P., Vahala, K.I., Kimble, H.J.: A photon turnstile dynamically regulated by one atom. Science 319, 1062 (2008)

    Article  ADS  Google Scholar 

  39. An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)

    Article  ADS  Google Scholar 

  40. Chen, Q., Feng, M.: Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process. Phys. Rev. A 79, 064304 (2009)

    Article  ADS  Google Scholar 

  41. Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)

    Article  ADS  Google Scholar 

  42. Cheng, L.Y., Wang, H.F., Zhang, S., Yeon, K.H.: Quantum state engineering with nitrogen-vacancy centers coupled to low-Q microresonator. Opt. Express 21, 5988 (2013)

    Article  ADS  Google Scholar 

  43. Tong, X., Wang, C., Cao, C., He, L.Y., Zhang, R.: A hybrid-system approach for W state and cluster state generation. Opt. Commun. 310, 166 (2014)

    Article  ADS  Google Scholar 

  44. Wang, C., Cao, C., Tong, X., Mi, S.C., Shen, W.W., Wang, T.J.: Implementation of quantum repeaters based on nitrogen-vacancy centers via coupling to microtoroid resonators. Laser Phys. 24, 105204 (2014)

    Article  ADS  Google Scholar 

  45. Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)

    Article  ADS  Google Scholar 

  46. Cheng, L.Y., Wang, H.F., Zhang, S.: Simple schemes for universal quantum gates with nitrogen-vacancy centers in diamond. J. Opt. Soc. Am. B 30, 1821 (2013)

    Article  Google Scholar 

  47. He, L.Y., Cao, C., Tong, X., Wang, C.: Quantum controlled-not gate operation and complete bell-state analysis using hybrid quantum circuits. Int. J. Theor. Phys. 53, 235 (2014)

    Article  MATH  Google Scholar 

  48. Liu, A.P., Cheng, L.Y., Chen, L., Su, S.L., Wang, H.F., Zhang, S.: Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator. Opt. Comm. 313, 180 (2014)

    Article  ADS  Google Scholar 

  49. Wang, C., Wang, T.J., Zhang, Y., Jiao, R.Z., Jin, G.S.: Concentration of entangled nitrogen-vacancy centers in decoherence free subspace. Opt. Express 22, 1551 (2014)

    Article  ADS  Google Scholar 

  50. Wang, C., Zhang, Y., Jin, G.S., Zhang, R.: Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators. J. Opt. Soc. Am. B 29, 3349 (2012)

    Article  ADS  Google Scholar 

  51. Wang, C., Zhang, Y., Lei, M., Jin, G.S., Ma, H.Q., Zhang, R.: Nonlocal entanglement concentration of separate nitrogen-vacancy centers coupling to microtoroidal resonators. Quantum Inf. Comput. 14, 0107 (2014)

    MathSciNet  Google Scholar 

  52. He, L.Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Comm. 298, 260 (2013)

    Article  ADS  Google Scholar 

  53. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  54. Manson, N.B., Harrison, J.P., Sellars, M.J.: Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006)

  55. Park, Y.S., Cook, A.K., Wang, H.: Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075 (2006)

    Article  ADS  Google Scholar 

  56. Larsson, M., Dinyari, K.N., Wang, H.: Composite optical microcavity of diamond nanopillar and silica microsphere. Nano Lett. 9, 1447 (2009)

    Article  ADS  Google Scholar 

  57. Barclay, P.E., Fu, F.M.C., Santori, C., Beausoleil, R.G.: Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. App. Phys. Lett. 95, 191115 (2009)

    Article  ADS  Google Scholar 

  58. McCutcheon, M.W., Loncar, M.: Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. Opt. Express 16, 19136 (2008)

    Article  ADS  Google Scholar 

  59. Englund, D., Shields, B., Rivoire, K., Hatami, F., Vuckovic, J., Park, H., Lukin, M.D.: Deterministic coupling of a single nitrogen acancy center to a photonic crystal cavity. Nano Lett. 10, 3922 (2010)

    Article  ADS  Google Scholar 

  60. Hanson, R., Gywat, O., Awschalom, D.D.: Room-temperature manipulation and decoherence of a single spin in diamond. Phys. Rev. B 74, 161203(R) (2006)

    Article  ADS  Google Scholar 

  61. Neumann, P., Kolesov, R., Naydenov, B., Beck, J., Rempp, F., Steiner, M., Jacques, V., Balasubramanian, G., Markham, M.L., Twitchen, D.J., Pezzagna, S., Meijer, J., Twamley, J., Jelezko, F., Wrachtrup, J.: Quantum register based on coupled electron spins in a room-temperature solid. Nat. Phys. 6, 249–253 (2010)

    Article  Google Scholar 

  62. Shi, F., Rong, X., Xu, N., Wang, Y., Wu, J., Chong, B., Peng, X., Kniepert, J., Schoenfeld, R.S., Harneit, W., Feng, M., Du, J.F.: Room-temperature implementation of the Deutsch–Jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett. 105, 040504 (2010)

  63. De Lange, G., Wang, Z.H., Riste, D., Dobrovitski, V.V., Hanson, R.: Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60 (2010)

    Article  ADS  Google Scholar 

  64. Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009)

    Article  ADS  Google Scholar 

  65. Hijlkema, M., Weber, B., Specht, H.P., Webster, S.C., Kuhn, A., Rempe, G.: A single-photon server with just one atom. Nat. Phys. 3, 253 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by China National Natural Science Foundation Grant Nos. 61471050, No. 61377097, and No. 11404031, Beijing Higher Education Young Elite Teacher Project No. YETP0456, and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University Grant No. KF201301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Ding, H., Li, Y. et al. Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quantum Inf Process 14, 1265–1277 (2015). https://doi.org/10.1007/s11128-015-0924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0924-1

Keywords

Navigation