Skip to main content
Log in

Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii–Moriya interactions

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the characteristics of entanglement teleportation of a two-qubit and three-qubit Heisenberg XYZ model under different Dzyaloshinskii–Moriya (DM) interactions with intrinsic decoherence taken into account. The two-qubit results reveal that the dynamics of entanglement is a symmetric function about the coupling coefficient \(J\) for the \(z\)-component DM system, whereas it is not for the \(x\)-component DM system. The ferromagnetic case is superior to the antiferromagnetic case to restrain decoherence when using the \(x\)-component DM system. The dependencies of entanglement, the output entanglement, and the average fidelity on initial state angle \(\alpha \) all demonstrate periodicity. Moreover, the \(x\)-component DM system can get a high fidelity both in two-qubit and in three-qubit teleportation protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body system. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Souza, A.M., Reis, M.S., Soares-Pinto, D.O., Oliveira, I.S., Sarthour, R.S.: Experimental determination of thermal entanglement in spin clusters using magnetic susceptibility measurements. Phys. Rev. B 77, 104402 (2008)

    Article  ADS  Google Scholar 

  5. Qin, M., Li, Y.B., Wu, F.P.: Relations between quantum correlations, purity and teleportation fidelity for the two-qubit Heisenberg XYZ system. Quantum Inf. Process. 13, 1573–1582 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Amniat-Talab, M., Jahromi, H.R.: On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with DM interaction in magnetic field. Quantum Inf. Process. 12, 1185–1199 (2013)

    Article  ADS  MATH  Google Scholar 

  7. Ma, X.S., Zhao, G.X., Zhang, J.Y., Wang, A.M.: Tripartite entanglement of a spin star model with Dzialoshinski–Moriya interaction. Quantum Inf. Process. 12, 321–329 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Li, D.C., Cao, Z.L.: Thermal entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii–Moriya couplings. Chin. Phys. Lett. 26, 020309 (2009)

    Article  ADS  Google Scholar 

  9. Majumdar, K.: Magnetic phase diagram of a spatially anisotropic, frustrated spin-1/2 Heisenberg antiferromagnet on a stacked square lattice. J. Phys.: Condens. Matter 23, 046001 (2011)

    ADS  Google Scholar 

  10. Hu, M.L., Fan, H.: Robustness of quantum correlations against decoherence. Ann. Phys. 327, 851–860 (2012)

    Article  ADS  MATH  Google Scholar 

  11. Man, Z.X., Xia, Y.J.: Quantum teleportation in a dissipative environment. Quantum Inf. Process. 11, 1911–1920 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Xu, J.B., Zou, X.B., Yu, J.H.: Influence of intrinsic decoherence on nonclassical properties of the two-mode Raman coupled model. Eur. Phys. J. D 10, 295–300 (2000)

    Article  ADS  Google Scholar 

  14. Mohammadi, H., Akhtarshenas, S.J., Kheirandish, F.: Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system. Eur. Phys. J. D 62, 439–447 (2011)

    Article  ADS  Google Scholar 

  15. Hu, M.L., Lian, H.L.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711–721 (2009)

    Article  ADS  Google Scholar 

  16. Yu, P.F., Cai, J.G., Liu, J.M., Shen, G.T.: Effects of phase decoherence on the entanglement of a two-qubit anisotropic Heisenberg XYZ chain with an in-plane magnetic field. Eur. Phys. J. D 44, 151–158 (2007)

    Article  ADS  Google Scholar 

  17. Guo, J.L., Song, H.S.: Effects of inhomogeneous magnetic field on entanglement and teleportation in a two-qubit Heisenberg XXZ chain with intrinsic decoherence. Phys. Scripta 78, 045002 (2008)

    Article  ADS  Google Scholar 

  18. Fan, K.M., Zhang, G.F.: Geometric quantum discord and entanglement between two atoms in Tavis–Cummings model with dipole–dipole interaction under intrinsic decoherence. Eur. Phys. J. D 68, 163 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. Shim, Yun-Pil, Oh, S., Hu, X.D., Friesen, M.: Controllable anisotropic exchange coupling between spin qubits in quantum dots. Phys. Rev. Lett. 106, 180503 (2011)

    Article  ADS  Google Scholar 

  20. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  21. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  22. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  23. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315–2323 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Zhou, Y., Zhang, G.F.: Quantum teleportation via a two-qubit Heisenberg XXZ chain—effects of anisotropy and magnetic field. Eur. Phys. J. D 47, 227–231 (2008)

    Article  ADS  Google Scholar 

  25. Zhang, G.F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski–Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  26. Yeo, Y.: Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation. Phys. Rev. A 68, 022316 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11035001, 11375086, 11105079, and 10975072), the National Major State Basic Research and Development of China (Grant Nos. 2013CB834400 and 2010CB327803), the Chinese Academy of Sciences Knowledge Innovation Project (Grant No. KJCX2-SW-N02), the Research Fund of Doctoral Point (RFDP) (Grant No. 20100091110028), and the Science and Technology Development Fund of Macau (Grant No. 068/2011/A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, M., Ren, ZZ. Influence of intrinsic decoherence on entanglement teleportation via a Heisenberg XYZ model with different Dzyaloshinskii–Moriya interactions. Quantum Inf Process 14, 2055–2066 (2015). https://doi.org/10.1007/s11128-015-0978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0978-0

Keywords

Navigation