Skip to main content
Log in

Necessary and sufficient fully separable criterion and entanglement of three-qubit Greenberger–Horne–Zeilinger diagonal states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We analytically prove that the necessary criterion coincides with the sufficient criterion for the full separability of three-qubit Greenberger–Horne–Zeilinger (GHZ) diagonal states. Our result closes the discussion on the separability of three-qubit GHZ diagonal states. Based on the criterion, the corresponding entanglement is exactly calculable for some GHZ diagonal states and is tractable for the others in terms of the relative entropy of entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  2. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  6. Gaudreau, L., Granger, G., Kim, A., Aers, G.C., Studenkin, S.A.: Coherent control of three-spin states in a triple quantum dot. Nat. Phys. 8, 54–58 (2012)

    Article  Google Scholar 

  7. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., et al.: 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  8. Yao, X.C., Wang, T.X., Xu, P., Lu, H., et al.: Observation of eight photon entanglement. Nat. Photonics 6, 225–228 (2012)

    Article  ADS  Google Scholar 

  9. Neeley, M., Bialczak, R.C., Lenander, M., Lucero, E., et al.: Generation of three-qubit entangled states using superconducting phase qubits. Nature 467, 570–573 (2010)

    Article  ADS  Google Scholar 

  10. DiCarlo, L., Reed, M.D., Sun, L., Johnson, B.R., et al.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature 467, 574–578 (2010)

    Article  ADS  Google Scholar 

  11. Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., et al.: Multipartite entanglement among single spins in diamond. Science 320, 1326–1329 (2008)

    Article  ADS  Google Scholar 

  12. Dür, W., Cirac, J.I.: Classification of multiqubit mixed states: separability and distillability properties. Phys. Rev. A 61, 042314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  13. Gühne, O., Seevinck, M.: Separability criteria for genuine multiparticle entanglement. New J. Phys. 12, 053002 (2010)

    Article  Google Scholar 

  14. Jungnitsch, B., Moroder, T., Gühne, O.: Taming multiparticle entanglement. Phys. Rev. Lett. 106, 190502 (2011)

    Article  ADS  Google Scholar 

  15. Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Distinguishing separable and entangled states. Phys. Rev. Lett. 88, 187904 (2002)

    Article  ADS  Google Scholar 

  16. Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Detection of high-dimensional genuine multipartite entanglement of mixed states. Phys. Rev. Lett. 104, 210501 (2010)

    Article  ADS  Google Scholar 

  17. Eltschka, C., Siewert, J.: Entanglement of three-qubit Greenberger–Horne–Zeilinger symmetric states. Phys. Rev. Lett. 108, 020502 (2012)

    Article  ADS  Google Scholar 

  18. Kay, A.: Optimal detection of entanglement in Greenberger–Horne–Zeilinger states. Phys. Rev. A 83, 020303(R) (2011)

    Article  ADS  Google Scholar 

  19. Gühne, O.: Entanglement criteria and full separability of multi-qubit quantum states. Phys. Lett. A 375, 406–410 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78, 2275–2279 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Aschauer, H., Dür, W., Briegel, H.-J.: Multiparticle entanglement purification for two-colorable graph states. Phys. Rev. A 71, 012319 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank the support of the National Natural Science Foundation of China (Grant No. 11375152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-yu Chen.

Appendices

Appendix 1: Proof of Eqs. (17) and (18)

The definition of \(C(\overrightarrow{X})\) in Eq. (12) leads to the solutions of the angles \(a,b,c\) as functions of the parameters \(\delta ,\alpha ,\beta ,\gamma ,\) namely [19],

$$\begin{aligned} \sin a= & {} \frac{1}{2\alpha }\frac{\sqrt{Q}}{\sqrt{R}},\sin b=\frac{1}{2\beta } \frac{\sqrt{Q}}{\sqrt{R}}, \\ \sin c= & {} \frac{1}{2\gamma }\frac{\sqrt{Q}}{\sqrt{R}}, \end{aligned}$$

with \(Q=-(\alpha \beta \delta +\alpha \beta \gamma -\alpha \gamma \delta -\beta \gamma \delta ) (\alpha \beta \delta -\alpha \beta \gamma +\alpha \gamma \delta -\beta \gamma \delta ) (\alpha \beta \delta -\alpha \beta \gamma -\alpha \gamma \delta +\beta \gamma \delta ) (\alpha \beta \delta +\alpha \beta \gamma +\alpha \gamma \delta +\beta \gamma \delta ), R=\alpha \beta \gamma \delta (\alpha \beta -\gamma \delta ) (\alpha \gamma -\beta \delta ) (\alpha \delta -\beta \gamma )\). Let us consider the derivative \(\frac{\partial C(\overrightarrow{X})}{\partial \alpha },\) we have

$$\begin{aligned} \frac{\partial C\left( \overrightarrow{X}\right) }{\partial \alpha }= & {} -\delta \sin d \frac{\partial d}{\partial \alpha }-\alpha \sin a\frac{\partial a}{\partial \alpha }+\cos a \\&-\beta \sin b\frac{\partial b}{\partial \alpha }-\gamma \sin c\frac{ \partial c}{\partial \alpha } \end{aligned}$$

Using (13), we have \(\frac{\partial C(\overrightarrow{X})}{\partial \alpha }=\alpha \sin a(\frac{\partial d}{\partial \alpha }-\frac{\partial a}{ \partial \alpha }-\frac{\partial b}{\partial \alpha }-\frac{\partial c}{ \partial \alpha })+\cos a\). Since \(d\equiv a+b+c,\) we have

$$\begin{aligned} \frac{\partial C\left( \overrightarrow{X}\right) }{\partial \alpha }=\cos a, \end{aligned}$$

similarly, \(\frac{\partial C(\overrightarrow{X})}{\partial \beta }=\cos b, \frac{\partial C(\overrightarrow{X})}{\partial \gamma }=\cos c\) and \(\frac{ \partial C(\overrightarrow{X})}{\partial \delta }=\cos d\).

Appendix 2: Closest separable state of GHZ diagonal state

Up to local Hadamard transformations, the \(\left| \hbox {GHZ}_k\right\rangle \) basis is equivalent to the graph state basis \(\left| G_\mu \right\rangle \) (\(\mu =\mu _1\mu _2\mu _3\) with \(\mu _i=0,1\)). For any state \(\sigma =\sum _{\mu ,\nu }q_{\mu \nu }\left| G_\mu \right\rangle \left\langle G_\nu \right| \), which may not be diagonal in the graph state basis, it is always possible to convert \(\sigma \), via local probabilistic operations, into a graph diagonal state \(\sigma _d=\sum _\mu q_{\mu \mu }\left| G_\mu \right\rangle \left\langle G_\mu \right| \)with the same diagonal elements [21]. So, if \(\sigma \) is fully separable, then \(\sigma _d\) is also fully separable since the local conversion to a diagonal state cannot introduce entanglement.

On the other hand, we use the fact that the function \(-\log x\) is convex which results in

$$\begin{aligned} -\log (\left\langle \phi \right| A\left| \phi \right\rangle )\le -\left\langle \phi \right| \log (A)\left| \phi \right\rangle \end{aligned}$$

for any operator \(A\) and any normalized state \(\left| \phi \right\rangle \) (see Ref. [20]). In the derivation, the spectrum decomposition of operator \(A\) is utilized. The relative entropy of a graph diagonal state \(\rho =\sum _\mu p_\mu \left| G_\mu \right\rangle \left\langle G_\mu \right| \) with respect to a fully separable state \(\sigma \) is

$$\begin{aligned} S(\rho ||\sigma )= & {} Tr\rho \log _2\rho -Tr\rho \log _2\sigma \\= & {} Tr\rho \log _2\rho -\sum _\mu p_\mu \left\langle G_\mu \right| \log _2\sigma \left| G_\mu \right\rangle \\\ge & {} Tr\rho \log _2\rho -\sum _\mu p_\mu \log _2\left( \left\langle G_\mu \right| \sigma \left| G_\mu \right\rangle \right) \\= & {} S(\rho ||\sigma _d) \end{aligned}$$

Thus, for any fully separable state \(\sigma \), we can always find a graph diagonal fully separable state \(\sigma _d\) such that the relative entropy \( S(\rho ||\sigma )\) is lower bounded by the relative entropy \(S(\rho ||\sigma _d)\). The closest fully separable state of an entangled graph diagonal state is a graph diagonal state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Xy., Jiang, Lz., Yu, P. et al. Necessary and sufficient fully separable criterion and entanglement of three-qubit Greenberger–Horne–Zeilinger diagonal states. Quantum Inf Process 14, 2463–2476 (2015). https://doi.org/10.1007/s11128-015-0990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0990-4

Keywords

Navigation