Skip to main content
Log in

Quantum circuits for \({\mathbb {F}}_{2^{n}}\)-multiplication with subquadratic gate count

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

One of the most cost-critical operations when applying Shor’s algorithm to binary elliptic curves is the underlying field arithmetic. Here, we consider binary fields \({\mathbb {F}}_{2^n}\) in polynomial basis representation, targeting especially field sizes as used in elliptic curve cryptography. Building on Karatsuba’s algorithm, our software implementation automatically synthesizes a multiplication circuit with the number of \(T\)-gates being bounded by \(7\cdot n^{\log _2(3)}\) for any given reduction polynomial of degree \(n=2^N\). If an irreducible trinomial of degree \(n\) exists, then a multiplication circuit with a total gate count of \({\mathcal {O}}(n^{\log _2(3)})\) is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. As usual, by a \(T\) -gate we mean the matrix \(\left( \begin{array}{cc}1&{}0\\ 0&{}\hbox {e}^{i\pi /4}\end{array}\right) \), and for the resource analysis we do not distinguish between \(T\)- and \(T^\dagger \)-gates.

  2. The somewhat unusual indexing will become clear in a moment.

  3. Performing the same multiplication with constant \(T\)-depth would be possible, the trade-off being additional wires—our Sage implementation can be adapted to optimize the number of qubits for a given constraint on the \(T\)-depth.

  4. The processing of \(X\) and \(Y\) is identical up to relabeling, so the length of \(L\) is half of the total number of CNOT gates.

References

  1. Amento, B., Rötteler, M., Steinwandt, R.: Efficient quantum circuits for binary elliptic curve arithmetic: reducing \(T\)-gate complexity. Quantum. Inf. Comput. 13, 631–644 (2013)

    MathSciNet  Google Scholar 

  2. Amento, B., Rötteler, M., Steinwandt, R.: Quantum binary field inversion: improved circuit depth via choice of basis representation. Quantum. Inf. Comput. 13, 116–134 (2013)

    MathSciNet  Google Scholar 

  3. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on 32(6), 818–830 (2013). For a preprint version see [4]

    Article  Google Scholar 

  4. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits arXiv:quant-ph/1206.0758v3, (January 2013). Available at http://arxiv.org/abs/1206.0758v3

  5. Budhathoki, P., Steinwandt, R.: Automatic synthesis of quantum circuits for point addition on ordinary binary elliptic curves. Quantum Information Processing, (accepted, to appear). Preprint http://lanl.arxiv.org/abs/1401.2437v1

  6. Burns, M.: QCViewer. GitHub repository, June 2013. Available at https://github.com/aparent/QCViewer

  7. Childs, A.M., van Dam, W.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82(1), 1–52 (2010)

    Article  MATH  ADS  Google Scholar 

  8. Fan, H., Hasan, A.: Alternative to the Karatsuba algorithm for software implementations of \(GF(2^n)\) multiplications. IET Inf. Secur. 3(2), 60–65 (2009)

    Article  Google Scholar 

  9. von zur Gathen, J., Gerhard, J.: Polynomial factorization over \({\mathbb{F}}_{2}\). Math. Comput. 71(240), 1677–1698 (2002)

    Article  MATH  ADS  Google Scholar 

  10. Karatsuba, A.A.: The complexity of computations. In: Proceedings of the Steklov Institute of Mathematics, 211:169–183, 1995. Available at http://www.ccas.ru/personal/karatsuba/divcen.pdf. Translated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, Vol. 211, (1995) pp. 186–202

  11. Kowada, L.A.B., Portugal, R., de Figueiredo, C.H.M.: Reversible Karatsuba’s algorithm. J. Univ. Comput. Sci. 12(5), 499–511 (2006)

    MathSciNet  Google Scholar 

  12. Maslov, D.: Reversible Logic Synthesis Benchmarks Page. http://webhome.cs.uvic.ca/~dmaslov/, (2011)

  13. Maslov, D., Falconer, S.M., Mosca, M.: Quantum circuit placement: optimizing qubit-to-qubit interactions through mapping quantum circuits into a physical experiment. In: Proceedings of the 44th Design Automation Conference—DAC 2007, pp. 962–965. ACM, (2007)

  14. Maslov, D., Mathew, J., Cheung, D., Pradhan, D.K.: An \(O(m^2)\)-depth quantum algorithm for the elliptic curve discrete logarithm problem over GF\((2^m)\). Quantum Inf. Comput. 9(7), 610–621 (2009). For a preprint version see [15]

    MATH  MathSciNet  Google Scholar 

  15. Maslov, D., Mathew, J., Cheung, D., Pradhan, D.K.: On the Design and Optimization of a Quantum Polynomial-Time Attack on Elliptic Curve Cryptography. arXiv:0710.1093v2, (2009). Available at http://arxiv.org/abs/0710.1093v2

  16. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, (2001). Sample chapters http://cacr.uwaterloo.ca/hac/

  17. National Institute of Standards and Technology, Gaithersburg, MD 20899–8900. FIPS PUB 186–4. Federal Information Processing Standard Publication. Digital Signature Standard (DSS), (July 2013). Available at http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

  18. Offermann, S., Wille, R., Dueck, G.W., Drechsler, R.: Synthesizing multiplier in reversible logic. In: 13th IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems—DDECS 2010, pp. 335–340. IEEE Computer Society, (2010)

  19. Parent, A.: Quantum Arithmetic Circuit Generator. GitHub Repository, (2012). Avalable at https://github.com/aparent/qacg

  20. Rötteler, M., Steinwandt, R.: A quantum circuit to find discrete logarithms on ordinary binary elliptic curves in depth O\((\log ^2 n)\). Quantum Inf. Comput. 14(9–10), 888–900 (2014). http://dl.acm.org/citation.cfm?id=2638681

  21. Shor, Peter W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stein, W.A. et al.: Sage Mathematics Software (Version 5.4). The Sage Development Team, (2012). http://www.sagemath.org

Download references

Acknowledgments

The authors thank Richard Cleve, Stephen Locke, and Dmitri Maslov for helpful discussions, and an anonymous referee for making us aware of [19]. RS is supported by NATO’s Public Diplomacy Division in the framework of “Science for Peace,” Project MD.SFPP 984520.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane Kepley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kepley, S., Steinwandt, R. Quantum circuits for \({\mathbb {F}}_{2^{n}}\)-multiplication with subquadratic gate count. Quantum Inf Process 14, 2373–2386 (2015). https://doi.org/10.1007/s11128-015-0993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0993-1

Keywords

Navigation