Skip to main content
Log in

Distillation of arbitrary single-photon entanglement assisted with polarized Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Single-photon entanglement (SPE) is a promising resource in quantum communication. However, it will suffer from the photon loss. In this paper, we will present an efficient approach to protect the two-mode SPE. This protocol not only can distill the SPE from the mixed state, but also can faithfully protect the information encoded in the polarization degree of freedom. Moreover, different from the previous protocols, if the SPE becomes a less-entangled state, we can also distill it to the maximally entangled state. During the whole protocol, we exploit the polarized Bell states to complete the task. This protocol can also be extended to protect the single-photon multi-mode W state. This protocol is feasible in current technology, for it only requires linear optical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984 ), pp. 175–179

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ma, X.F., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  4. Ma, X.F., Fung, C.-H.F., Lo, H.-K.: Quantum key distribution with entangled photon sources. Phys. Rev. A 76, 012307 (2007)

    Article  ADS  Google Scholar 

  5. Zhang, C.M., Song, X.T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59, 2825 (2014)

    Article  Google Scholar 

  6. Su, X.L.: Applying Gaussian quantum discord to quantum key distribution. Chin. Sci. Bull. 59, 1083 (2014)

    Article  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  10. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  11. Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    ADS  Google Scholar 

  12. Orieux, A., D’Arrigo, A., Ferranti, G., Lo Franco, R., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5, 8575 (2015)

    Article  ADS  Google Scholar 

  13. D’Arrigo, A., Lo Franco, R., Benenti, G., Paladino, E., Falci, G.: Recovering entanglement by local operations. Ann. Phys. 350, 211 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Lo Franco, R., D’Arrigo, A., Falci, G., Compagno, G., Paladino, E.: Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling. Phys. Rev. B 90, 054304 (2014)

    Article  ADS  Google Scholar 

  15. Man, Z.X., Xia, Y.J., Lo Franco, R.: Harnessing non-Markovian quantum memory by environmental coupling. arXiv:1506.08293 (2015)

  16. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L.: Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  17. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58, 4571 (2013)

    Article  Google Scholar 

  18. Chang, Y., Zhang, S.B., Yan, L.L., Li, J.: Deterministic secure quantum communication and authentication protocol based on three-particle W state and quantum one-time pad. Chin. Sci. Bull. 59, 2835 (2014)

    Article  Google Scholar 

  19. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Chin. Sci. Bull. 59, 2541 (2014)

    Article  Google Scholar 

  20. Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. Chin. Phys. Mech. Astron. 57, 1696–1702 (2014)

    Article  ADS  Google Scholar 

  21. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  22. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  23. Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs. Sci. Chin. Phys. Mech. Astron. 57, 1238–1243 (2014)

    Article  ADS  Google Scholar 

  24. Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Preparation of multipartite entangled states used for quantum information networks. Sci. Chin. Phys. Mech. Astron. 57, 1210–1217 (2014)

    Article  ADS  Google Scholar 

  25. Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60, 141–141 (2015)

    Article  Google Scholar 

  26. Gisin, N., Thew, R.: Quantum communication. Nat. Photonics 1, 165 (2007)

    Article  ADS  Google Scholar 

  27. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413 (2001)

    Article  ADS  Google Scholar 

  28. Simon, C., De Riedmatten, H., Afzelius, M., Sangouard, N., Zbinden, H., Gisin, N.: Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007)

    Article  ADS  Google Scholar 

  29. Sangouard, N., Simon, C., Minar, J., Zbinden, H., De Riedmatten, H., Gisin, N.: Long-distance entanglement distribution with single-photon sources. Phys. Rev. A 76, 050301(R) (2007)

    Article  ADS  Google Scholar 

  30. Lee, H.-W., Kim, J.: Quantum teleportation and Bell’s inequality using single-particle entanglement. Phys. Rev. A 63, 012305 (2000)

    Article  ADS  Google Scholar 

  31. Lombardi, E., Sciarrino, F., Popescu, S., Martini, F.D.: Teleportation of a vacuum-one-photon qubit. Phys. Rev. Lett. 88, 070402 (2002)

    Article  ADS  Google Scholar 

  32. Hessmo, B., Usachev, P., Heydari, H., Bjork, G.: Experimental demonstration of single photon nonlocality. Phys. Rev. Lett. 92, 180401 (2004)

    Article  ADS  Google Scholar 

  33. Dunningham, J., Vedral, V.: Nonlocality of a single particle. Phys. Rev. Lett. 99, 180404 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Jones, S.J., Wiseman, H.M.: Nonlocality of a single photon: paths to an Einstein-Podolsky-Rosen-steering experiment. Phys. Rev. A 84, 012110 (2011)

    Article  ADS  Google Scholar 

  35. Paris, M.G.A., Cola, M., Bonifacio, R.: Quantum-state engineering assisted by entanglement. Phys. Rev. A 67, 042104 (2003)

    Article  ADS  Google Scholar 

  36. D’Ariano, G.M., Lo Presti, P.: Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. Phys. Rev. Lett. 86, 4195 (2001)

    Article  ADS  Google Scholar 

  37. D’Ariano, G.M., Presti, P.L., Paris, M.G.A.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87, 270404 (2001)

    Article  Google Scholar 

  38. Silberhorn, C., Ralph, T.C., Lütkenhaus, N., Leuchs, G.: Continuous variable quantum cryptography: beating the 3 dB loss limit. Phys. Rev. Lett. 89, 167901 (2002)

    Article  ADS  Google Scholar 

  39. Silberhorn, C., Korolkova, N., Leuchs, G.: Quantum key distribution with bright entangled beams. Phys. Rev. Lett. 88, 167902 (2002)

    Article  ADS  Google Scholar 

  40. Benatti, F., Floreanini, R., Marzolino, U.: Sub-shot-noise quantum metrology with entangled identical particles. Ann. Phys. 325, 924 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Marzolino, U.: Entanglement in dissipative dynamics of identical particles. Eur. Phys. Lett. 104, 40004 (2013)

    Article  ADS  Google Scholar 

  42. Benatti, F., Floreanini, R., Marzolino, U.: Entanglement robustness and geometry in systems of identical particles. Phys. Rev. A 85, 042329 (2012)

    Article  ADS  MATH  Google Scholar 

  43. Benatti, F., Floreanini, R., Marzolino, U.: Bipartite entanglement in systems of identical particles: the partial transposition criterion. Ann. Phys. 327, 1304 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement: a key issues review. Rep. Prog. Phys. 78, 042001 (2015)

    Article  ADS  Google Scholar 

  45. Lo Franco, R., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two-qubit system within non-Markovian environments. Int. J. Mod. Phys. B 27, 1345053 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Ralph, T.C., Lund, A.P.: Nondeterministic noiseless linear amplification of quantum systems. In: lvovsky, A. (ed.) Proceedings of the 9th International Conference on Quantum Communication Measurement and Computing , pp. 155–160 (2009)

  48. Gisin, N., Pironio, S., Sangouard, N.: Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier. Phys. Rev. Lett. 105, 070501 (2010)

    Article  ADS  Google Scholar 

  49. Curty, M., Moroder, T.: Heralded-qubit amplifiers for practical device-independent quantum key distribution. Phys. Rev. A 84, 010304(R) (2011)

    Article  ADS  Google Scholar 

  50. Pitkanen, D., Ma, X., Wickert, R., van Loock, P., Lütkenhaus, N.: Efficient heralding of photonic qubits with application to device-independent quantum key distribution. Phys. Rev. A 84, 022325 (2011)

    Article  ADS  Google Scholar 

  51. Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Heralded photon amplification for quantum communication. Phys. Rev. A 86, 023815 (2012)

    Article  ADS  Google Scholar 

  52. Kocsis, S., Xiang, G.Y., Ralph, T.C., Pryde, G.J.: Heralded noiseless amplification of a photon polarization qubit. Nat. Phys. 9, 23 (2012)

    Article  Google Scholar 

  53. Xiang, G.Y., Ralph, T.C., Lund, A.P., Walk, N., Pryde, G.J.: Heralded noiseless linear amplification and distillation of entanglement. Nat. Photonics 4, 316 (2010)

    Article  Google Scholar 

  54. Meyer-Scott, E., Bula, M., Bartkiewicz, K., Černoch, A., Soubusta, J., Jennewein, T., Lemr, K.: Entanglement-based linear-optical qubit amplifier. Phys. Rev. A 88, 012327 (2013)

    Article  ADS  Google Scholar 

  55. Bartkiewicz, K., C̆ernoch, A., Lemr, K., Soubusta, J., Stobińska, M.: Efficient amplification of photonic qubits by optimal quantum cloning. Phys. Rev. A 89, 062322 (2014)

    Article  ADS  Google Scholar 

  56. Zhang, S.L., Yang, S., Zou, X.B., Shi, B.S., Guo, G.C.: Protecting single-photon entangled state from photon loss with noiseless linear amplification. Phys. Rev. A 86, 034302 (2012)

    Article  ADS  Google Scholar 

  57. Wang, T.J., Cao, C., Wang, C.: Linear-optical implementation of hyperdistillation from photon loss. Phys. Rev. A 89, 052303 (2014)

    Article  ADS  Google Scholar 

  58. Sheng, Y.B., Ou-Yang, Y., Zhou, L., Wang, L.: Protecting single-photon multi-mode W state from photon loss. Quantum Inf. Process. 13, 1595 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Feng, Z.F., Ou-Yang, Y., Zhou, L., Sheng, Y.B.: Entanglement assisted single-photon W state amplification. Opt. Commun. 340, 80 (2015)

    Article  ADS  Google Scholar 

  61. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quant. Inf. Comput. 10, 272 (2010)

    MathSciNet  MATH  Google Scholar 

  62. Zhou, L., Sheng, Y.B.: Efficient single-photon entanglement concentration for quantum communications. Opt. Commun. 313, 217 (2014)

    Article  ADS  Google Scholar 

  63. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  64. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 044305 (2012)

    Google Scholar 

  65. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  66. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)

    Article  ADS  Google Scholar 

  67. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  68. Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776–1820 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quant. Inf. Process. 12, 1885–1895 (2013)

    Article  ADS  MATH  Google Scholar 

  70. Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quant. Inf. Process. 12, 2087–2101 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  71. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys Rev A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  72. Ren, B.C., Long, G.L.: General hyperentanglement concentration for photon systems assisted by quantum-dot spins inside optical microcavities. Opt. Express 22, 6547–6561 (2014)

    Article  ADS  Google Scholar 

  73. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quant. Inf. Process. 12, 1307–1320 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Du, F.F., Deng, F.G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. Chin. Phys. Mech. Astron. 58, 040303 (2015)

    Google Scholar 

  75. Li, X.H., Ghose, S.: Hyperconcentration for multipartite entanglement via linear optics. Laser Phys. Lett. 11, 125201 (2014)

    Article  ADS  Google Scholar 

  76. Sheng, Y.B., Liu, J., Zhao, S.Y., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 59, 3507–3513 (2013)

    Article  Google Scholar 

  77. Zhang, R., Zhou, S.H., Cao, C.: Efficient nonlocal two-step entanglement concentration protocol for three-level atoms in an arbitrary less-entangled W state using cavity input–output process. Sci. Chin. Phys. Mech. Astron. 57, 1511–1518 (2014)

    Article  ADS  Google Scholar 

  78. Li, X.H., Ghose, S.: Efficient hyperconcentration of nonlocal multipartite entanglement via the cross-Kerr nonlinearity. Opt. Express 23, 3550–3562 (2015)

    Article  ADS  Google Scholar 

  79. Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. Chin. Phys. Mech. Astron. 58, 060301 (2015)

    Article  Google Scholar 

  80. Sheng, Y.B., Zhao, S.Y., Liu, J., Wang, X.F., Zhou, L.: Arbitrary four-photon cluster state concentration with cross-Kerr nonlinearity. Int. J. Theor. Phys. 54, 1292–1303 (2015)

    Article  MATH  Google Scholar 

  81. Cao, C., Wang, T.J., Zhang, R., Wang, C.: Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace. Laser Phys. Lett. 12, 036001 (2015)

    Article  ADS  Google Scholar 

  82. Li, T., Deng, F.G.: Linear-optics-based entanglement concentration of four-photon chi-type states for quantum communication network. Int. J. Theor. Phys. 53, 3026–3034 (2014)

    Article  MATH  Google Scholar 

  83. Sheng, Y.B., Qu, C.C., Ou-Yang, Y., Feng, Z.F., Zhou, L.: Practical entanglement concentration for entangled coherent states. Int. J. Theor. Phys. 53, 2033–2040 (2014)

    Article  MATH  Google Scholar 

  84. Zhou, L.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates. Chin. Phys. B 23, 050308 (2014)

    Article  Google Scholar 

  85. Gu, B., Huang, Y.G., Fang, X., Wang, H.B.: Entanglement concentration of partially entangled multi-electron spin W states with CNOT gates. Int. J. Theor. Phys. 53, 1337–1345 (2014)

    Article  MATH  Google Scholar 

  86. Sheng, Y.B., Zhou, L.: Efficient electronic entanglement concentration assisted by single mobile electrons. Chin. Phys. B 22, 110303 (2013)

    Article  ADS  Google Scholar 

  87. Wang, C., Cao, C., He, L.Y., Zhang, C.L.: Hybrid entanglement concentration using quantum dot and microcavity coupled system. Quant. Inf. Process. 13, 1025–1034 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  88. Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states. Quant. Inf. Process. 14, 2077–2099 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. Cao, C., Ding, H., Li, Y., Wang, T.J., Mi, S.C., Zhang, R.: Efficient multipartite entanglement concentration protocol for nitrogen-vacancy center and microresonator coupled systems. Quant. Inf. Process. 14, 1265–1277 (2015)

    Article  ADS  MATH  Google Scholar 

  90. Fan, L.L., Xia, Y., Song, J.: Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quant. Inf. Process. 13, 1967–1978 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. Wang, G.Y., Li, T., Deng, F.G.: High-efficiency atomic entanglement concentration for quantum communication network assisted by cavity QED. Quant. Inf. Process. 14, 1305–1320 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  92. Zhao, S.Y., Liu, J., Zhou, L., Sheng, Y.B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quant. Inf. Process. 12, 3633–3647 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. Papp, S.B., Choi, K.S., Deng, H., Lougovski, P., van Enk, S.J., Kimble, H.: Characterization of multipartite entanglement for one photon shared among four optical modes. Science 324, 764 (2009)

    Article  ADS  Google Scholar 

  94. Gottesman, D., Jennewein, T., Croke, S.: Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012)

    Article  ADS  Google Scholar 

  95. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71–78 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11474168 and 61401222, the Qing Lan Project in Jiangsu Province and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZF., Ou-Yang, Y., Zhou, L. et al. Distillation of arbitrary single-photon entanglement assisted with polarized Bell states. Quantum Inf Process 14, 3693–3710 (2015). https://doi.org/10.1007/s11128-015-1075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1075-0

Keywords

Navigation