Skip to main content
Log in

A new scheme on improving the performance of the quantum key distribution with two-intensity weak coherent light

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new scheme on implementing the quantum key distribution with two-intensity weak coherent light and compare its performance with other existing methods. Through numerical simulations, we demonstrate that our new scheme can exceed almost all other existing decoy-state methods, e.g., the standard three-intensity decoy-state method and the usual passive decoy-state method, both in the transmission distance and in the final key generation rate, approaching very closely to the ideal case of using an infinite number of decoy states. Besides, we also consider the finite-size key effect. We demonstrate that under current experimental conditions, even when taking statistical fluctuation into account, a quite high key generation rate can still be obtained at very long transmission distance by applying our new scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, pp. 175–179. IEEE, New York (1984)

  2. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)

    Article  MathSciNet  Google Scholar 

  5. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  Google Scholar 

  6. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  7. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44.1 (2002)

    Article  Google Scholar 

  8. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  9. Wang, X.B.: Decoy-state protocol for quantum cryptography with four different intensities of coherent light. Phys. Rev. A. 72, 012322 (2005)

    Article  ADS  Google Scholar 

  10. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  11. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  12. Ma, X.F., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  13. Wang, Q., Wang, X.B., Guo, G.C.: Practical decoy state for quantum key distribution. Phys. Rev. A 75, 012312 (2007)

    Article  ADS  Google Scholar 

  14. Scarani, V., Acín, A., Ribordy, G., Gisin, N.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. Lett. 92, 057901 (2004)

    Article  ADS  Google Scholar 

  15. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  16. Branciard, C., Cavalcanti, E.G., Walborn, S.P., Scarani, V., Wiseman, H.M.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012)

    Article  ADS  Google Scholar 

  17. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  18. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  19. Tamaki, K., Lo, H.K., Fung, C.H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)

    Article  ADS  Google Scholar 

  20. Wang, Q., Wang, X.B.: Efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded signal-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  21. Zhao, Y., Qi, B., Ma, X.F., Lo, H.K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)

    Article  ADS  Google Scholar 

  22. Curty, M., Ma, X., Qi, B., Moroder, T.: Passive decoy-state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310 (2010)

    Article  ADS  Google Scholar 

  23. Mauerer, W., Sliberhorn, C.: Quantum key distribution with passive decoy state selection. Phys. Rev. A 75, 050305 (2007)

    Article  ADS  Google Scholar 

  24. Zhou, Y.H., Yu, Z.W., Wang, X.B.: Tightened estimation can improve the key rate of measure-device-independent quantum key distribution by more than 100 %. Phys. Rev. A 89, 052325 (2014)

    Article  ADS  Google Scholar 

  25. Zhou, C., Bao, W.S., Chen, W., Li, H.W., Yin, Z.Q., Wang, Y., Han, Z.F.: Phase-encoded measurement-device-independent quantum key distribution with practical spontaneous-parametric-down-conversion sources. Phys. Rev. A 88, 052333 (2013)

    Article  ADS  Google Scholar 

  26. Tang, Y.L., Yin, H.L., Chen, S.J., Liu, Y., Zhang, W.J., Jiang, X., Zhang, L., Wang, J., You, L.X., Guan, J.Y., Yang, D.X., Wang, Z., Liang, H., Zhang, Z., Zhou, N., Ma, X.F., Chen, T.Y., Zhang, Q., Pan, J.W.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014)

    Article  ADS  Google Scholar 

  27. Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)

    Article  ADS  Google Scholar 

  28. Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.F.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 73 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4, 686 (2010)

    Article  ADS  Google Scholar 

  30. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grants Nos. 11274178, 11311140250, and 61475197, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions through Grants No. YX002001, and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications through Grant Nos. NY212011 and NY214142.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, F., Zhou, XY., Liu, AP. et al. A new scheme on improving the performance of the quantum key distribution with two-intensity weak coherent light. Quantum Inf Process 14, 3773–3784 (2015). https://doi.org/10.1007/s11128-015-1081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1081-2

Keywords

Navigation