Skip to main content
Log in

On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The theory of entanglement-assisted quantum error-correcting codes (EAQECCs) is a generalization of the standard stabilizer formalism. Any quaternary (or binary) linear code can be used to construct EAQECCs under the entanglement-assisted (EA) formalism. We derive an EA-Griesmer bound for linear EAQECCs, which is a quantum analog of the Griesmer bound for classical codes. This EA-Griesmer bound is tighter than known bounds for EAQECCs in the literature. For a given quaternary linear code \(\mathcal {C}\), we show that the parameters of the EAQECC that EA-stabilized by the dual of \(\mathcal {C}\) can be determined by a zero radical quaternary code induced from \(\mathcal {C}\), and a necessary condition under which a linear EAQECC may achieve the EA-Griesmer bound is also presented. We construct four families of optimal EAQECCs and then show the necessary condition for existence of EAQECCs is also sufficient for some low-dimensional linear EAQECCs. The four families of optimal EAQECCs are degenerate codes and go beyond earlier constructions. What is more, except four codes, our \([[n,k,d_{ea};c]]\) codes are not equivalent to any \([[n+c,k,d]]\) standard QECCs and have better error-correcting ability than any \([[n+c,k,d]]\) QECCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  2. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  4. Gottesman, D.: Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  5. Knill, E., Laflamme, R.: A theory of quantum error-correcting codes. Phys. Rev. A 55, 1862–1868 (1996)

    MathSciNet  Google Scholar 

  6. Gottesman, D.: Stabilizer codes and quantum error correction, Ph.D. Thesis, California Institute of Technology. quant-ph/9707027 (1997)

  7. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error-correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rains, E.M.: Quantum shadow enumerators. IEEE Trans. Inf. Theory 45, 2361–2366 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ashikhmin, A., Litsn, S.: Upper bounds on the size of quantum codes. IEEE Trans. Inf. Theory 45, 1206–1215 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. MacKay, D.J.C., Mitchison, G., McFadden, P.L.: Sparse-graph codes for quantum error correction. IEEE Trans. Inf. Theory 50, 2315–2330 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bowen, G.: Entanglement required in achieving entanglement-assisted channel capacities. Phys. Rev. A 60, 052313 (2002)

    Article  ADS  Google Scholar 

  12. Brun, T., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Lai, C.Y., Brun, T.A.: Entanglement increases the error-correcting ability of quantum error-correcting codes. Phys. Rev. A 88, 012320 (2013). See also arXiv:1008.2598v1

  14. Hsieh, M.H., Devetak, I., Brun, T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007)

    Article  ADS  Google Scholar 

  15. Hsieh, M.H.: Entanglement-assisted quantum coding theory. arXiv:0807.2080v2 (2008)

  16. Wilde, M.M.: Quantum coding with entanglement. arXiv:0806.4212 (2008)

  17. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)

    Article  ADS  Google Scholar 

  18. Hsieh, M.H., Brun, T.A., Devetak, I.: Entanglement-assisted quantum quasicyclic low-density parity-check codes. Phys. Rev. A 79, 032340 (2009)

    Article  ADS  Google Scholar 

  19. Li, R.: Introduction to entanglement-assisted quantum coding theory (2010, unpublished data)

  20. Fujiwara, Y., Clark, D., Vandendriessche, P., De Boeck, M., Tonchev, V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A 82, 042338 (2010)

    Article  ADS  Google Scholar 

  21. Hsieh, M.H., Yen, W.T., Hsu, L.Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory 57, 1761–1769 (2011)

    Article  MathSciNet  Google Scholar 

  22. Lai, C.Y., Brun, T.A., Wilde, M.M.: Dualities and identities for entanglement-assisted quantum codes. arXiv:1010.5506v2 (2011)

  23. Lai, C.Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE Trans. Inf. Theory 59, 4020–4024 (2013)

    Article  MathSciNet  Google Scholar 

  24. Fujiwara, Y., Tonchev, V.D.: A characterization of entanglement-assisted quantum low-density parity-check codes. IEEE Trans. Inf. Theory 59, 3347–3353 (2013)

    Article  MathSciNet  Google Scholar 

  25. Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013)

    Article  ADS  Google Scholar 

  26. Li, R., Guo, L., Xu, Z.: Entanglement-assisted quantum codes achieving the Singleton bound and violating the Hamming bound. Quantum Inf. Comput. 13–14, 1107–1116 (2014)

    MathSciNet  Google Scholar 

  27. Fujiwara, Y.: Quantum error correction via less noisy qubits. Phys. Rev. Lett. 110, 170501 (2013)

    Article  ADS  Google Scholar 

  28. Shin, J., Heo, J., Brun, T.A.: General quantum error-correcting code with entanglement based on code-word stabilized quantum code. arXiv:1311.1533 (2013)

  29. Luo, Z., Devetak, I.: Efficiently implementable codes for quantum key expansion. Phys. Rev. A 75(1), 010303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  30. Hsu, K.-C., Brun, T.A.: Family of finite geometry low-density paritycheck codes for quantum key expansion. Phys. Rev. A 87(1), 062332 (2013)

    Article  ADS  Google Scholar 

  31. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference Computers, Systems and Signal Processing, pp. 175C179 (Bangalore, India) (1984)

  32. Wilde, Mark M., Fattal, David: Nonlocal quantum information in bipartite quantum error correction. Quantum Inf. Process. 9, 591–610 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Griesmer, J.H.: A bound for error-correcting codes. IBM J. Res. Dev. 4, 532–542 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  34. Solomon, G., Stiffler, J.J.: Algebraically punctured cyclic codes. Inf. Control 8, 170–179 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  35. Macwilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  36. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  37. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes constructed from linear codes. Quantum Inf. Process. (2014). doi:10.1007/s11128-014-0830-y

  38. Sarvepalli, P., Klappenecker, A.: Degenerate quantum codes and the quantum Hamming bound. Phys. Rev. A 81, 032318 (2010)

    Article  ADS  Google Scholar 

  39. Wan, Z.: Geometry of Classical Groups over Finite Fields. Chart Well Bratt, Lund (1993)

    MATH  Google Scholar 

  40. Huffman, W.C.: On the classification and enumeration of self-dual codes. Finite Fields Appl. 11, 451–490 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed on 26 May 2014

  42. Baumert, L.D., McEliece, R.J.: A note on the Griesmer bound. IEEE Trans. Inf. Theory 9, 134–135 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  43. Li, R., Lu, L., Guo, L.: Optimal quaternary codes with given radical dimension (2013, unpublished data)

Download references

Acknowledgments

We are indebted to the anonymous reviewers for constructive comments and suggestions on our manuscript, which improve the manuscript significantly. Part of this work was carried out while R. Li was visiting the Chern Institute of Mathematics (CIM) at Nankai University, Tianjin, China. R. Li is grateful to the Institute for the kind hospitality. The research is supported by National Natural Science Foundation of China under Grant No.11471011 and the National Key Basic Research Program of China (“973” program) under Grant No. 2013CB834204.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruihu Li.

Appendices

Appendix A: Proof of Theorem 4.3

Proof

To prove Theorem 4.3, we give our discussion in three steps. Firstly, we construct \(B_{3,i}\) for \(1\le i\le 20\), such that \(G_{5,n}=(G_{5,8}\mid B_{5,i})\) generates a code \(\mathcal {C}_{n}\) and \(R(\mathcal {C}_{n})\) is a two-dimensional code with weight polynomial \(W_{1,n}(z)=1+6z^{4}+9z^{8}\). The matrices \(B_{3,i}\) for \(1\le i\le 20\) are as follows:

$$\begin{aligned} B_{3,1}= & {} \left( \begin{array}{ccccccccccccccccccc} 0\\ 1\\ 3\\ \end{array} \right) , \quad B_{3,2}= \left( \begin{array}{ccccccccccccccccccc} 10\\ 21\\ 02\\ \end{array} \right) , B_{3,3}= \left( \begin{array}{ccccccccccccccccccc} 110\\ 021\\ 103\\ \end{array} \right) , \quad B_{3,4}= \left( \begin{array}{ccccccccccccccccccc} 1 0 0 1\\ 1 1 1 0\\ 0 2 1 2\\ \end{array} \right) ,\\ B_{3,5}= & {} \left( \begin{array}{ccccccccccccccccccc} 11011\\ 31003\\ 12230\\ \end{array} \right) , B_{3,6}=\left( \begin{array}{ccccccccccccccccccc} 1 0 1 1 0 1\\ 2 1 0 0 1 3\\ 0 1 3 1 3 2\\ \end{array} \right) ,\\ B_{3,20}= & {} \left( \begin{array}{ccccccccccccccccccc} 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1\\ 2 3 1 2 0 3 3 0 0 0 2 2 1 1 3 1 0 1 2 0\\ 0 0 2 2 1 3 1 2 3 0 1 1 2 1 2 3 1 0 3 2\\ \end{array} \right) , B_{3,7}=\left( \begin{array}{ccccccccccccccccccc} 0 0 1 1 0 1 1\\ 1 1 2 0 1 0 1\\ 1 3 0 3 2 2 0\\ \end{array} \right) ,\\ B_{3,8}= & {} \left( \begin{array}{ccccccccccccccccccc} 1 1 1 0 0 1 1 1\\ 0 3 2 1 1 0 0 1\\ 2 3 0 2 3 1 3 0\\ \end{array} \right) , \quad B_{3,19}= \left( \begin{array}{ccccccccccccccccccc} 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 0\\ 0 1 0 2 2 3 3 1 3 2 0 0 3 0 1 1 1 1 0\\ 2 0 1 0 2 0 2 1 1 3 0 3 1 1 0 3 2 3 1\\ \end{array} \right) ,\\ B_{3,9}= & {} \left( \begin{array}{ccccccccccccccccccc} 0 0 1 1 1 1 0 0 1\\ 1 0 1 3 3 1 1 1 3\\ 1 1 3 1 3 0 2 3 0\\ \end{array} \right) , \quad B_{3,10}=\left( \begin{array}{ccccccccccccccccccc} 1 0 0 1 1 1 1 0 1 0\\ 1 1 1 3 3 3 0 1 3 1\\ 0 1 0 0 2 1 2 3 1 2\\ \end{array} \right) ,\\ B_{3,18}= & {} \left( \begin{array}{ccccccccccccccccccc} 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1\\ 3 1 0 0 3 2 3 0 1 1 1 3 2 0 0 1 1 3\\ 3 0 2 1 0 0 2 0 1 3 2 1 1 1 3 3 2 0\\ \end{array} \right) , B_{3,11}=\left( \begin{array}{ccccccccccccccccccc} 0 0 0 1 1 1 1 0 1 1 1\\ 1 1 1 0 2 0 3 0 3 2 3\\ 3 1 2 2 1 1 3 1 0 0 2\\ \end{array} \right) ,\\ B_{3,12}= & {} \left( \begin{array}{ccccccccccccccccccc} 0 0 1 0 1 1 1 1 0 1 1 1\\ 1 1 3 0 2 3 3 2 1 0 0 1\\ 1 2 3 1 1 1 2 0 3 2 1 2\\ \end{array} \right) , \quad B_{3,13}=\left( \begin{array}{ccccccccccccccccccc} 1 1 1 1 1 1 0 1 1 0 1 1 0\\ 2 1 3 0 2 0 1 1 2 1 0 0 1\\ 0 0 2 1 2 2 1 3 1 3 1 3 0\\ \end{array} \right) ,\\ B_{3,14}= & {} \left( \begin{array}{ccccccccccccccccccc} 1 1 1 1 1 1 1 1 1 1 1 1 1 1\\ 0 3 0 3 2 3 3 2 3 1 1 1 2 2\\ 3 2 2 0 0 0 1 1 3 2 1 0 1 2\\ \end{array} \right) , \quad B_{3,17}=\left( \begin{array}{ccccccccccccccccccc} 0 1 0 1 1 1 1 0 1 1 1 0 1 1 0 1 1\\ 1 0 1 0 1 2 0 1 1 3 0 0 2 3 1 2 0\\ 2 3 3 3 0 3 1 1 2 0 2 1 0 1 0 1 1\\ \end{array} \right) ,\\ B_{3,15}= & {} \left( \begin{array}{ccccccccccccccccccc} 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1\\ 1 2 1 0 3 0 1 0 3 3 2 1 2 1 1\\ 3 3 0 3 2 2 1 1 3 1 0 2 0 0 2\\ \end{array} \right) , \quad B_{3,16}=\left( \begin{array}{ccccccccccccccccccc} 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 1\\ 0 1 0 0 1 3 3 3 1 3 3 0 1 1 1 2\\ 3 2 1 0 2 0 2 1 1 0 2 1 1 3 3 0\\ \end{array} \right) . \end{aligned}$$

Secondly, using the matrices \(B_{3,i}\) for \(1\le i\le 20\), we construct \(G_{5,n}\) for \(n\ge 9\) as follows:

  1. (1)

    If \(n=21t+i\ge 9\) and \(0\le i\le 7\), construct \(G_{5,n}=(G_{5,8}\mid B_{5,13+i}\mid (t-1)D_{5,21})\).

  2. (2)

    \(n=21t+i\ge 9\) and \(8\le i\le 20\), construct \(G_{5,n}=(G_{5,8}\mid B_{5,i-8}\mid tD_{5,21})\).

Let \(\mathcal {C}_{n}\) be the code generated by \(G_{5,n}\), the weight polynomial of \(\mathcal {C}_{n}\) be \(W_{n}(z)\) for \(n\ge 9\). Then \(R(\mathcal {C}_{n})\) is a two-dimensional code with weight polynomial \(W_{R}(z)=1+6z^{4}+9z^{8}\), and all the weight polynomials of these \(W_{n}(z)\) can be derived from \(W_{j}(z)\) for \(8\le j\le 28\). It is not difficult to check \(W_{j}(z)\)’ for \(8\le j\le 28\) are as follows:

$$\begin{aligned} W_{8}(z)= & {} 1+24z^{3}+114z^{4}+144z^{5}+408z^{6}+216z^{7}+117z^{8},\\ W_{9}(z)= & {} 1+54z^{4}+132z^{5}+192z^{6}+360z^{7}+201z^{8}+84z^{9},\\ W_{10}(z)= & {} 1+6z^{4}+96z^{5}+108z^{6}+288z^{7}+273z^{8}+192z^{9}+60z^{10},\\ W_{11}(z)= & {} 1+6z^{4}+144z^{6}+180z^{7}+153z^{8}+360z^{9}+144z^{10}+36z^{11},\\ W_{12}(z)= & {} 1+6z^{4}+12z^{6}+204z^{7}+117z^{8}+264z^{9}+276z^{10}+108z^{11}+36z^{12},\\ W_{13}(z)= & {} 1+6z^{4}+48z^{7}+153z^{8}+276z^{9}+192z^{10}+216z^{11}+96z^{12}+36z^{13},\\ W_{14}(z)= & {} 1+6z^{4}+93z^{8}+216z^{9}+144z^{10}+288z^{11}+180z^{12}+72z^{13}+24z^{14},\\ W_{15}(z)= & {} 1+6z^{4}+9z^{8}+144z^{9}+168z^{10}+252z^{11}+192z^{12}+168z^{13}\\&+\,72z^{14}+12z^{15},\\ W_{16}(z)= & {} 1+6z^{4}+9z^{8}+12z^{9}+216z^{10}+144z^{11}+144z^{12}+348z^{13}\\&+\,72z^{14}+72z^{15},\\ W_{17}(z)= & {} 1+6z^{4}+9z^{8}+72z^{10}+\cdots +12z^{17},\\ W_{18}(z)= & {} 1+6z^{4}+9z^{8}+132z^{11}+\cdots +12z^{18},\\ W_{19}(z)= & {} 1+6z^{4}+9z^{8}+84z^{12}+\cdots +24z^{18},\\ W_{20}(z)= & {} 1+6z^{4}+9z^{8}+168z^{13}+216z^{14}+\cdots +12z^{19},\\ W_{21}(z)= & {} 1+6z^{4}+9z^{8}+84z^{13}+108z^{14}+\cdots +12z^{21},\\ W_{22}(z)= & {} 1+6z^{4}+9z^{8}+120z^{14}+192z^{15}+\cdots +24z^{21},\\ W_{23}(z)= & {} 1+6z^{4}+9z^{8}+156z^{15}+156z^{16}+\cdots +24z^{22},\\ W_{24}(z)= & {} 1+6z^{4}+9z^{8}+48z^{15}+192z^{16}+\cdots +24z^{23},\\ W_{25}(z)= & {} 1+6z^{4}+9z^{8}+48z^{16}+180z^{17}+\cdots +48z^{23},\\ W_{26}(z)= & {} 1+6z^{4}+9z^{8}+60z^{17}+144z^{18}+\cdots +24z^{23},\\ W_{27}(z)= & {} 1+6z^{4}+9z^{8}+144z^{18}+156z^{19}+\cdots +156z^{23},\\ W_{28}(z)= & {} 1+6z^{4}+9z^{8}+192z^{19}+168z^{20}+\cdots +12z^{26} \end{aligned}$$

For \(n=21t+i>28\), from the construction of \(G_{5,n}\), we can deduce weight polynomial \(W_{n}(z)\) of \(\mathcal {C}_{n}\) must be: \(W_{21t+i}(z)=1+6z^{4}+9z^{8}+(W_{21+i}(z)-W_{R}(z))z^{16(t-1)}\) for \(0\le i\le 7\), and \(W_{21t+i}(z)=1+6z^{4}+9z^{8}+(W_{i}(z)-W_{R}(z))z^{16t}\) for \(8\le i\le 20\).

Thirdly, from \(W_{n}(z)\) of \(\mathcal {C}_{n}\) (\(n\ge 9\)), one can deduce the minimal weight \(d_{ea}(n)\)’ of \(\mathcal {C}_{n}\setminus R(\mathcal {C}_{n})\) for \(n=21t+i\), where \(d_{ea}(n)\)’ are as follows:

$$\begin{aligned} d_{ea}(21t+i)= & {} 16t+i-3\quad \hbox {for} \quad t\ge 1, 0\le i\le 2,\\ d_{ea}(21t+i)= & {} 16t+i-4\quad \hbox {for} \quad t\ge 1, 3\le i\le 7,\\ d_{ea}(21t+i)= & {} 16t+i-5\quad \hbox {for} \quad t\ge 0, 8\le i\le 11,\\ d_{ea}(21t+i)= & {} 16t+i-6\quad \hbox {for} \quad t\ge 0, 12\le i\le 15,\\ d_{ea}(21t+i)= & {} 16t+i-7\quad \hbox {for} \quad t\ge 0, 16\le i\le 20. \end{aligned}$$

It is trivial to verify the EAQECCs \([[21t+5,3,16t+1;21t-2]], [[21t+6,3,16t+2;21t-1]]\) and \([[21t+7,3,16t+3;21t]]\) for \(t\ge 1, [[21t+10,3,16t+5;21t+3]], [[21t+11,3,16t+6;21t+4]], [[21t+15,3,16t+9;21t+8]]\) and \([[21t+20,3,16t+13;21t+13]]\) for \(t\ge 0\) achieve the EA-Griesmer bound. The EAQECCs \([[21t,3,16t-3;21t-7]], [[21t+1,3,16t-2;21t-6]], [[21t+2,3,16t-1;21t-5]]\) and \([[21t+8,3,16t+3;21t+1]]\) for \(t\ge 1, [[21t+9,3,16t+4;21t+2]], [[21t+12,3,16t+6;21t+5]], [[21t+13,3,16t+7;21t+6]], [[21t+14,3,16t+8;21t+7]], [[21t+16,3,16t+9;21t+9]], [[21t+17,3,16t+10;21t+10]], [[21t+18,3,16t+11;21t+11]]\) and \([[21t+19,3,16t+12;21t+12]]\) for \(t\ge 0\) are optimal codes and have lengths one above the EA-Griesmer bound. The EAQECCs \([[21t+3,3,16t-1;21t-4]]\) and \([[21t+4,3,16t;21t-3]]\) are optimal codes and have lengths two above the EA-Griesmer bound.

Summarizing the above discussions, the theorem follows.

Appendix B: Proof of Theorem 4.4

Proof

To prove Theorem 4.4, we give our discussion in three steps. Firstly, we construct \(D_{3,i}\) for \(1\le i\le 21\), such that \(G_{6,n}=(G_{6,12}\mid D_{6,i})\) generates a code \(\mathcal {C}_{n}\) and \(R(\mathcal {C}_{n})\) is a three-dimensional code with weight polynomial \(W_{R}(z)=1+9z^{4}+27z^{8}+27z^{12}\). Let \(D_{3,21}=S_{3}\) and construct the matrices \(D_{3,i}\) for \(1\le i\le 20\) as follows:

$$\begin{aligned} D_{3,1}= & {} \left( \begin{array}{ccccccccccccccccccc} 1\\ 3\\ 1\\ \end{array} \right) , \quad D_{3,2}= \left( \begin{array}{ccccccccccccccccccc} 10\\ 01\\ 33\\ \end{array} \right) , \quad D_{3,3}= \left( \begin{array}{ccccccccccccccccccc} 011\\ 011\\ 131\\ \end{array} \right) , \quad D_{3,4}= \left( \begin{array}{ccccccccccccccccccc} 1110\\ 1311\\ 3123\\ \end{array} \right) , \\ D_{3,5}= & {} \left( \begin{array}{ccccccccccccccccccc} 11111\\ 13213\\ 22010 \\ \end{array} \right) , \quad D_{3,9}= \left( \begin{array}{ccccccccccccccccccc} 101011111\\ 011012321\\ 330120223\\ \end{array} \right) ,\\D_{3,20}= & {} \left( \begin{array}{ccccccccccccccccccc} 11111001100111111111\\ 02310100211211133021\\ 33311012223200210302\\ \end{array} \right) , D_{3,6}= \left( \begin{array}{ccccccccccccccccccc} 011101\\ 030113\\ 113322\\ \end{array} \right) ,\\ D_{3,8}= & {} \left( \begin{array}{ccccccccccccccccccc} 10111101\\ 11132001\\ 33112312\\ \end{array} \right) , D_{3,19}= \left( \begin{array}{ccccccccccccccccccc} 1101100111111111111\\ 1311110212311000322 \\ 1103231310302023221\\ \end{array} \right) ,\\ D_{3,7}= & {} \left( \begin{array}{ccccccccccccccccccc} 1001011\\ 1102132\\ 1012223\\ \end{array} \right) , \quad D_{3,10}=\left( \begin{array}{ccccccccccccccccccc} 1110001101\\ 1101111102\\ 1212102010\\ \end{array} \right) ,\\ D_{3,18}= & {} \left( \begin{array}{ccccccccccccccccccc} 001111101101011011\\ 113112111210120120\\ 322332112113321002\\ \end{array} \right) , D_{3,11}=\left( \begin{array}{ccccccccccccccccccc} 10101101111\\ 11011303122\\ 23313213002\\ \end{array} \right) ,\\ D_{3,12}= & {} \left( \begin{array}{ccccccccccccccccccc} 101101101011\\ 113102203101\\ 331213012231\\ \end{array} \right) , \quad D_{3,13}=\left( \begin{array}{ccccccccccccccccccc} 1011110111011\\ 3022321000121\\ 3113101102322\\ \end{array} \right) ,\\ D_{3,14}= & {} \left( \begin{array}{ccccccccccccccccccc} 11111111111111\\ 32313131032020\\ 00311223023213\\ \end{array} \right) , \quad D_{3,17}=\left( \begin{array}{ccccccccccccccccccc} 10101111101111100\\ 31302010111133011\\ 11112203102320032\\ \end{array} \right) ,\\ D_{3,15}= & {} \left( \begin{array}{ccccccccccccccccccc} 101111011101101\\ 111110111013012\\ 133022203001332\\ \end{array} \right) , \quad D_{3,16}=\left( \begin{array}{ccccccccccccccccccc} 1111111111110110\\ 3031112133100021\\ 2000312211331103\\ \end{array} \right) . \end{aligned}$$

Secondly, using the matrices \(D_{3,i}\) for \(1\le i\le 21\), we construct \(G_{6,n}\) for \(n\ge 12\) as follows.

  1. (1)

    If \(n=21t+i\ge 12\) and \(0\le i\le 11\), construct \(G_{6,n}=(G_{6,12}\mid D_{6,9+i}\mid (t-1)D_{6,21})\).

  2. (2)

    \(n=21t+i\ge 12\) and \(12\le i\le 20\), construct \(G_{6,n}=(G_{6,12}\mid D_{6,i-12}\mid tD_{6,21})\).

Let \(\mathcal {C}_{n}\) be the code generated by \(G_{6,n}\), the weight polynomial of \(\mathcal {C}_{n}\) be \(W_{6,n}(z)\) for \(n\ge 12\). Then \(R(\mathcal {C}_{n})\) is a three-dimensional code with weight polynomial \(W_{R}(z)=1+9z^{4}+27z^{8}+27z^{12}\), and all the weight polynomials of these \(W_{n}(z)\) can be derived from \(W_{6,j}(z)\) for \(12\le j\le 32\). It is not difficult to check \(W_{6,j}(z)\)’s for \(12\le j\le 32\) are as follows:

$$\begin{aligned} W_{6,12}(z)= & {} 1+9z^{4}+288z^{6}+432z^{7}+459z^{8}+\cdots +171z^{12},\\ W_{6,13}(z)= & {} 1+9z^{4}+24z^{6}+408z^{7}+387z^{8}+\cdots +120z^{13},\\ W_{6,14}(z)= & {} 1+9z^{4}+96z^{7}+363z^{8}+768z^{9}+\cdots +48z^{14},\\ W_{6,15}(z)= & {} 1+9z^{4}+147z^{8}+648z^{9}+504z^{10} +840z^{11}+\cdots +24z^{15},\\ W_{6,16}(z)= & {} 1+9z^{4}+27z^{8}+288z^{9}+384z^{10} +\cdots +48z^{16},\\ W_{6,17}(z)= & {} 1+9z^{4}+27z^{8}+96z^{9}+240z^{10} +672z^{11}+\cdots ++48z^{17},\\ W_{6,18}(z)= & {} 1+9z^{4}+27z^{8}+96z^{10} +384z^{11}+651z^{12}+\cdots +48z^{18},\\ W_{6,19}(z)= & {} 1+9z^{4}+27z^{8} +288z^{11}+291z^{12}+\cdots +24z^{19},\\ W_{6,20}(z)= & {} 1+9z^{4}+27z^{8}+171z^{12}+816z^{13}+\cdots +576z^{18},\\ W_{6,21}(z)= & {} 1+9z^{4}+27z^{8}+27z^{12}+360z^{13}+672z^{14}+\cdots +24z^{21},\\ W_{6,22}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+240z^{13}+384z^{14}+\cdots +96z^{21},\\ W_{6,23}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+168z^{14}+408z^{15}+\cdots +24z^{23},\\ W_{6,24}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+264z^{15}+\cdots +24z^{23},\\ W_{6,25}(z)= & {} 1+9z^{4}+27z^{8}+27z^{12}+144z^{15}+264z^{16}+\cdots +24z^{23},\\ W_{6,26}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+168z^{16}+360z^{17}+\cdots +48z^{25},\\ W_{6,27}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+384z^{17}+504z^{18}+\cdots +120z^{25},\\ W_{6,28}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+288z^{18}+624z^{19}+\cdots +288z^{25},\\ W_{6,29}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+408z^{19}+408z^{20} +\cdots +120z^{26},\\ W_{6,30}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+288z^{19}+168z^{20}+\cdots +48z^{28},\\ W_{6,31}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12}+144z^{20}+\cdots +48z^{28},\\ W_{6,32}(z)= & {} 1+9z^{4}+27z^{8} +27z^{12} +480z^{21}+240z^{22}+\cdots +48z^{30}. \end{aligned}$$

Thirdly, from the weight polynomial \(W_{6, n}(z)\) of \(\mathcal {C}_{n}\) with \( n\ge 12\), one can deduce the minimal weight \(d_{ea}(n)\)’ of \(\mathcal {C}_{n}\setminus R(\mathcal {C}_{n})\) for \(n=21t+i\) is as follows:

$$\begin{aligned} d_{ea}(21t+i)= & {} 16t+i-4\quad \hbox {for}\quad t\ge 1, 1\le i\le 3,\\ d_{ea}(21t+i)= & {} 16t+i-5\quad \hbox {for}\quad t\ge 1, 4\le i\le 8,\\ d_{ea}(21t+i)= & {} 16t+i-6\quad \hbox {for}\quad t\ge 1, 9\le i\le 11,\\ d_{ea}(21t+12)= & {} 16t+6\quad \hbox {for}\quad t\ge 0,\\ d_{ea}(21t+i)= & {} 16t+i-7\quad \hbox {for}\quad t\ge 0, 13\le i\le 16,\\ d_{ea}(21t+i)= & {} 16t+i-8\quad \hbox {for}\quad t\ge 0, 17\le i\le 21. \end{aligned}$$

It is trivial to verify the EAQECCs \([[21t,3,16(t-1)+13;21t-3]], [[21t+6,3,16t+1;21t-3]], [[21t+7,3,16t+3;21t-2]], [[21t+8,3,16t+3;21t-1]]\) and \([[21t+11,3,16t+5;21t+2]]\) for \(t\ge 1, [[21t+12,3,16t+6;21t+3]]\) and \([[21t+16,3,16t+9;21t+7]]\) for \(t\ge 0\) achieve the EA-Griesmer bound. The EAQECCs \([[21t+1,3,16t-3;21t-8]], [[21t+2,3,16t-2;21t-7]], [[21t+3,3,16t-1;21t-6]]\), \([[21t+9,3,16t+3;21t]]\) and \([[21t+10,3,16t+4;21t+1]]\) for \(t\ge 1\), and \([[21t+13,3,16t+6;21t+4]], [[21t+14,3,16t+7;21t+5]], [[21t+15,3,16t+8;21t+6]], [[21t+17,3,16t+9;21t+8]], [[21t+18,3,16t+10;21t+9]], [[21t+19,3,16t+11;21t+10]]\) and \([[21t+20,3,16t+12;21t+11]]\) for \(t\ge 0\) are optimal codes and have lengths one above the EA-Griesmer bound. The EAQECCs \([[21t+4,3,16t-1;21t-5]]\) and \([[21t+5,3,16t;21t-4]]\) are optimal codes and have lengths two above the EA-Griesmer bound. Summarizing the above discussions, the theorem follows.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Li, X. & Guo, L. On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound. Quantum Inf Process 14, 4427–4447 (2015). https://doi.org/10.1007/s11128-015-1143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1143-5

Keywords

Navigation