Skip to main content
Log in

Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum coherence based on Wigner–Yanase skew information and its relations with quantum phase transitions (QPTs) in one-dimensional quantum spin-1/2 chains are studied. Different from those at the critical point (CP) of the Ising transition in the transverse-field XY chain, the single-spin quantum coherence and the two-spin local \(\sigma ^z\) quantum coherence are extremal at the CP of the anisotropy transition, and the first-order derivatives of the two-spin local \(\sigma ^x\) and \(\sigma ^y\) quantum coherence have logarithmic divergence with the chain size. For the QPT between the gapped and gapless phases in the chain with three-spin interactions, however, no finite-size scaling behavior of the derivatives of quantum coherence is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  2. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Olliver, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90, 050401 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Åberg, J.: Quantifying superposition. arXiv:quant-ph/0612146

  10. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  11. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

  12. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  14. Chakrabarti, B.K., Dutta, A., Sen, P.: Quantum Ising Phases and Transitions in Transverse Ising Models. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  15. Continentino, M.A.: Quantum Scaling in Many-Body Systems. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  16. Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  17. Çakmak, B., Karpat, G., Gedik, Z.: Critical point estimation and long-range behavior in the one-dimensional XY model using thermal quantum and total correlations. Phys. Lett. A 376, 2982 (2012)

    Article  ADS  Google Scholar 

  18. Zhong, M., Xu, H., Liu, X.-X., Tong, P.-Q.: The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY chain in a transverse field. Chin. Phys. B 22, 090313 (2013)

    Article  ADS  Google Scholar 

  19. Cheng, W.W., Li, J.X., Shan, C.J., Gong, L.Y., Zhao, S.M.: Criticality, factorization and Wigner–Yanase skew information in quantum spin chains. Quantum Inf. Process. 14, 2535 (2015)

    Article  ADS  MATH  Google Scholar 

  20. Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liu, X., Zhong, M., Xu, H., Tong, P.: Chiral phase and quantum phase transitions of anisotropic XY chains with three-site interactions. J. Stat. Mech. 01, P01003 (2012)

    Google Scholar 

  22. Lou, P., Wu, W.-C., Chang, M.-C.: Quantum phase transition in spin-12 XX Heisenberg chain with three-spin interaction. Phys. Rev. B 70, 064405 (2004)

    Article  ADS  Google Scholar 

  23. Derzhko, O., Verkholyak, T., Krokhmalshii, T., Büttner, H.: Dynamic probes of quantum spin chains with the Dzyaloshinskii-Moriya interaction. Phys. Rev. B 73, 214407 (2006)

    Article  ADS  Google Scholar 

  24. Lei, S., Tong, P.: Quantum discord in the transverse field XY chains with three-spin interaction. Physica B 463, 1 (2015)

    Article  ADS  Google Scholar 

  25. Bunder, J.E., McKenzie, R.H.: Effect of disorder on quantum phase transitions in anisotropic XY spin chains in a transverse field. Phys. Rev. B 60, 344 (1999)

    Article  ADS  Google Scholar 

  26. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gu, S.-J., Tian, G.-S., Lin, H.-Q.: Ground-state entanglement in the XXZ model. Phys. Rev. A 71, 052322 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  29. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  30. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459–468 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11175087). We would like to thank Ming Zhong for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiqing Tong.

Appendix: The root of the two-spin density matrix \(\rho _{AB}\)

Appendix: The root of the two-spin density matrix \(\rho _{AB}\)

The density matrix of a two-spin reduced state in the representation spanned by the natural basis has the general form

$$\begin{aligned} \rho _{AB}=\left( {\begin{array}{*{20}c} {\rho _{11}} &{} 0 &{} 0 &{} {\rho _{14}}\\ 0 &{} {\rho _{22}} &{} {\rho _{23}} &{} 0\\ 0 &{} {\rho _{23}^*} &{} {\rho _{33}} &{} 0\\ {\rho _{14}^*} &{} 0 &{} 0 &{} {\rho _{44}}\\ \end{array}} \right) , \end{aligned}$$
(12)

that is \(\rho _{12}=\rho _{13}=\rho _{24}=\rho _{34}=0\). This visual appearance resembling the letter X has led them to be called X-state [29, 30]. Sometimes the off-diagonal elements are all real and the condition \(\rho _{2,2}=\rho _{3,3}\) is satisfied, which will contribute to simplify the further calculations.

The eigenvalues and their corresponding normalized eigenvectors of the density matrix \(\rho _{AB}\) in Eq. (12) are given by

$$\begin{aligned} \lambda _{1,2}= & {} \frac{(\rho _{11}+\rho _{44}) \pm \sqrt{(\rho _{11}-\rho _{44})^2+4 \, |\rho _{14}|^2}}{2}, \nonumber \\ \lambda _{3,4}= & {} \frac{(\rho _{22}+\rho _{33}) \pm \sqrt{(\rho _{22}-\rho _{33})^2+4 \, |\rho _{23}|^2}}{2}, \end{aligned}$$
(13)

and

$$\begin{aligned} \begin{aligned}&u_1=\frac{1}{N_1}\left( \begin{array}{c} \rho _{14}\\ 0\\ 0\\ \lambda _1-\rho _{11} \end{array}\right) , u_2=\frac{1}{N_2}\left( \begin{array}{c} \rho _{14}\\ 0\\ 0\\ \lambda _2-\rho _{11} \end{array}\right) ,\\&u_3=\frac{1}{N_3}\left( \begin{array}{c} 0\\ \rho _{23}\\ \lambda _3-\rho _{22}\\ 0 \end{array}\right) , u_4=\frac{1}{N_4}\left( \begin{array}{c} 0\\ \rho _{23}\\ \lambda _4-\rho _{22}\\ 0 \end{array}\right) , \end{aligned} \end{aligned}$$
(14)

where the \(N_i(i=1,4)\) are the normalization factors written by

$$\begin{aligned} \begin{array}{l} N_1=\sqrt{|\rho _{14}|^2+(\lambda _1-\rho _{11})^2},\\ N_2=\sqrt{|\rho _{14}|^2+(\lambda _2-\rho _{11})^2},\\ N_3=\sqrt{|\rho _{23}|^2+(\lambda _3-\rho _{22})^2},\\ N_4=\sqrt{|\rho _{23}|^2+(\lambda _4-\rho _{22})^2}. \end{array} \end{aligned}$$
(15)

That is to say, the density matrix \(\rho _{AB}\) can be diagonalized by the unitary transformation \(\rho =U{\varLambda }U^{\dagger }\). The columns of the unitary matrix U are the eigenvectors of \(\rho _{AB}\), and the elements of diagonal matrix \({\varLambda }\) are the corresponding eigenvalues. By straightforward calculations, the root of the two-qubit reduced state \(\sqrt{\rho _{AB}}=U \sqrt{{\varLambda }} U^{\dagger }\) has the form

$$\begin{aligned} \sqrt{\rho _{AB}}=\left( {\begin{array}{*{20}c} a &{} 0 &{} 0 &{} w \\ 0 &{} b &{} z &{} 0 \\ 0 &{} z^*&{} c &{} 0 \\ w^*&{} 0 &{} 0 &{} d \\ \end{array}} \right) , \end{aligned}$$
(16)

with the elements

$$\begin{aligned} \begin{array}{l} a=|\rho _{14}|^2\left( \frac{\sqrt{\lambda _1}}{N_1^2}+\frac{\sqrt{\lambda _2}}{N_2^2}\right) ,\\ b=|\rho _{23}|^2\left( \frac{\sqrt{\lambda _3}}{N_3^2}+\frac{\sqrt{\lambda _4}}{N_4^2}\right) ,\\ c=\frac{\sqrt{\lambda _3}\left( \lambda _3-\rho _{22}\right) ^2}{N_3^2}+\frac{\sqrt{\lambda _4}\left( \lambda _4-\rho _{22}\right) ^2}{N_4^2}\\ d=\frac{\sqrt{\lambda _1}\left( \lambda _1-\rho _{11}\right) ^2}{N_1^2}+\frac{\sqrt{\lambda _2}\left( \lambda _2-\rho _{11}\right) ^2}{N_2^2},\\ w=\rho _{14}\left( \frac{\sqrt{\lambda _1}\left( \lambda _1-\rho _{11}\right) }{N_1^2}+\frac{\sqrt{\lambda _2}\left( \lambda _2-\rho _{11}\right) }{N_2^2}\right) ,\\ z=\rho _{23}\left( \frac{\sqrt{\lambda _3}\left( \lambda _3-\rho _{22}\right) }{N_3^2}+\frac{\sqrt{\lambda _4}\left( \lambda _4-\rho _{22}\right) }{N_4^2}\right) . \end{array} \end{aligned}$$
(17)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, S., Tong, P. Wigner–Yanase skew information and quantum phase transition in one-dimensional quantum spin-1/2 chains. Quantum Inf Process 15, 1811–1825 (2016). https://doi.org/10.1007/s11128-016-1244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1244-9

Keywords

Navigation