Skip to main content
Log in

Quantum correlation for two-qubit systems interacting with macroscopic objects

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider two particles of spin- interacting with two one-dimensional N-spin arrays, respectively, which is an exactly solvable model. In this model, the one-dimensional N-spin arrays can be regarded as a macroscopic medium if we consider the number N of spins being large enough. In this paper, we investigate the dynamics of entanglement and quantum discord of the spins of two particles in the case of two particles passing through the macroscopic mediums synchronously and out-sync. In both case, we can obtain that the entanglement decreases monotonically with time and may suffer a sudden death in the evolution. Different from the entanglement dynamics, quantum discord first remains unchanged during a period of time and decreases later, which can be described as the sudden transition between classical and quantum decoherence. We also observe that the entanglement and quantum discord decay to zero in the case of enough large N, which can be understood that the interaction with the macroscopic medium can destroy the quantum correlation of a two-qubit system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Allahverdyan, A.E., Balian, R., Nieuwenhuizenc, T.M.: Understanding quantum measurement from the solution of dynamical models. Phys. Rep. 525, 1 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, O., Zeh, H.D.: Decoherence and the Appearance of the Classical World in Quantum Theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  4. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  5. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  6. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  7. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  8. Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  9. Gu, M., Chrzanowski, H.M., Assad, S.M., Symul, T., Modi, K., Ralph, T.C., Vedral, V., Lam, P.K.: Observing the operational significance of discord consumption. Nat. Phys. 8, 671–675 (2012)

    Article  Google Scholar 

  10. Brodutch, A., Terno, D.R.: Quantum discord, local operations, and Maxwells demons. Phys. Rev. A 81, 062103 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  12. Jaynes, E., Cummings, F.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  13. Dukelsky, J., Dussel, G.G., Esebbag, C., Pittel, S.: Exactly solvable models for atom-molecule Hamiltonians. Phys. Rev. Lett. 93, 050403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hepp, K.: Quantum theory of measurement and macroscopic observalbles. Helv. Phys. Acta 45, 237–248 (1972)

    Google Scholar 

  15. Nakazato, H., Pascazio, S.: Solvable dynamical model for a quantum measurement process. Phys. Rev. Lett. 70, 1 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Nakazato, H., Pascazio, S.: Macroscopic limit of a solvable dynamical model. Phys. Rev. A 48, 1066–1081 (1993)

    Article  ADS  Google Scholar 

  17. Sun, C.P.: Quantum dynamical model for wave-function reduction in classical and macroscopic limit. Phys. Rev. A 48, 898–906 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  18. Hiyama, K., Takagi, S.: Generalized Coleman–Hepp model and quantum coherence. Phys. Rev. A 48, 2586–2597 (1993)

    Article  ADS  MATH  Google Scholar 

  19. Nakazato, H., Namiki, M., Pascazio, S.: Exponential behavior of a quantum system in a macroscopic medium. Phys. Rev. Lett. 73, 1063–1066 (1994)

    Article  ADS  Google Scholar 

  20. Wootters, W.K.: Entanglement of formation of an arbitrary atate of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  21. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” state. Quantum Inf. Comput. 7, 459–468 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. Liu, Y., Lu, J., Zhou, L.: Quantum correlations of two qubits interacting with a macroscopic medium. Quantum Inf. Process 14, 1343–1360 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Fundamental Research Program of China (the 973 Program) under Grant No. 2012CB922103 and the National Natural Science Foundation of China under Grants Nos. 11374095, 11422540, 11434011, 11575058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, MW., Liu, Y., Lu, J. et al. Quantum correlation for two-qubit systems interacting with macroscopic objects. Quantum Inf Process 15, 2805–2817 (2016). https://doi.org/10.1007/s11128-016-1297-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1297-9

Keywords

Navigation