Skip to main content
Log in

The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We put forward a new scheme for implementing the measurement-device-independent quantum key distribution (QKD) with weak coherent source, while using only two different intensities. In the new scheme, we insert a beam splitter and a local detector at both Alice’s and Bob’s side, and then all the triggering and non-triggering signals could be employed to process parameter estimations, resulting in very precise estimations for the two-single-photon contributions. Besides, we compare its behavior with two other often used methods, i.e., the conventional standard three-intensity decoy-state measurement-device-independent QKD and the passive measurement-device-independent QKD. Through numerical simulations, we demonstrate that our new approach can exhibit outstanding characteristics not only in the secure transmission distance, but also in the final key generation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  3. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  5. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  6. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44.1 (2002)

    Article  Google Scholar 

  7. Makarov, V., Anisimov, A., Skaar, J.: Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A 74, 022313 (2006)

    Article  ADS  Google Scholar 

  8. Qi, B., Fung, C.-H.F., Lo, H.-K., et al.: Time-shift attack in practical quantum cryptosystems. Quantum Inf. Comput. 7, 073 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Fung, C.-H.F., Qi, B., Tamaki, K., Lo, H.-K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75, 032314 (2007)

    Article  ADS  Google Scholar 

  10. Li, H.-W., Wang, S., Huang, J.-Z.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84, 062308 (2011)

    Article  ADS  Google Scholar 

  11. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  12. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  13. Lo, H.-K., Ma, X.-F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  14. Wang, Q., Wang, X.-B., Guo, G.C.: Practical decoy-state method in quantum key distribution with a heralded single-photon source. Phys. Rev. A 75, 012312 (2007)

    Article  ADS  Google Scholar 

  15. Wang, Q., Wang, X.-B.: Improved practical decoy state method in quantum key distribution with parametric down-conversion source. Europhys. Lett. 79, 40001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wang, Q., Chen, W., Xavier, G.: Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Phys. Rev. Lett. 100, 090501 (2008)

    Article  ADS  Google Scholar 

  17. Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)

    Article  ADS  Google Scholar 

  18. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  19. Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Tightened estimation can improve the key rate of measurement-device-independent quantum key distribution by more than 100. Phys. Rev. A 89, 052325 (2014)

    Article  ADS  Google Scholar 

  20. Wang, X.B.: Measurement-device-independent quantum key distribution. Phys. Rev. A 87, 012320 (2013)

    Article  ADS  Google Scholar 

  21. Tamaki, K., Lo, H.-K., Fung, C.-H.F., Qi, B.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)

    Article  ADS  Google Scholar 

  22. Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)

    Article  ADS  Google Scholar 

  23. Wang, Q., Wang, X.-B.: An efficient implementation of the decoy-state measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 88, 052332 (2013)

    Article  ADS  Google Scholar 

  24. Wang, Q., Wang, X.-B.: Simulating of the measurement-device independent quantum key distribution with phase randomized general sources. Sci. Rep. 4, 04612 (2014)

    ADS  Google Scholar 

  25. Wang, D., Li, M., Zhu, F., Yin, Z.-Q., Chen, W., Han, Z.-F., Guo, G.-C., Wang, Q.: Quantum key distribution with the single-photon-added coherent source. Phys. Rev. A 90, 062315 (2014)

    Article  ADS  Google Scholar 

  26. Curty, M., Ma, X., Qi, B., Moroder, T.: Passive decoy state quantum key distribution with practical light sources. Phys. Rev. A 81, 022310 (2010)

    Article  ADS  Google Scholar 

  27. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014)

  28. Tang, Y.L., Yin, H.L., Chen, S.J., Liu, Y., Zhang, W.J., Jiang, X., Zhang, L., Wang, J., You, L.X., Guan, J.Y., Yang, D.X., Wang, Z., Liang, H., Zhang, Z., Zhou, N., Ma, X., Chen, T.Y., Zhang, Q., Pan, J.W.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 114, 069901 (2015)

    Article  ADS  Google Scholar 

  29. Comandar, L.C., Lucamarini, M., Frohlich, B.: Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat. Photonics 10, 312C315 (2016)

    Article  Google Scholar 

  30. Wang, S., Yin, Z.-Q., Chen, W.: Experimental demonstration of quantum key distribution without monitoring of the signal disturbance. Nat. Photonics 9, 832C836 (2015)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China through Grants Nos. 11274178, 61475197 and 61590932, the Natural Science Foundation of the Jiangsu Higher Education Institutions through Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province through Grant No. BK20150039 and the Priority Academic Program Development of Jiangsu Higher Education Institutions through Grant No. YX002001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, JR., Zhu, F., Zhou, XY. et al. The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states. Quantum Inf Process 15, 3799–3813 (2016). https://doi.org/10.1007/s11128-016-1371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1371-3

Keywords

Navigation