Skip to main content
Log in

The negativity of Wigner function as a measure of quantum correlations

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study comparatively the behaviors of Wigner function and quantum correlations for two quasi-Werner states formed with two general bipartite superposed coherent states. We show that the Wigner function can be used to detect and quantify the quantum correlations. However, we show that it is in fact not sensitive to all kinds of quantum correlations but only to entanglement. Then, we analyze the measure of non-classicality of quantum states based on the volume occupied by the negative part of the Wigner function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  7. Bennet, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  8. Gerry, C., Knight, P.: introductory quantum optics. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  9. Wigner, E.P.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  10. Zachos, K.C., Fairlie, B.D., Curtright, L.T.: Quantum mechanics in phase space. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  11. Scully, M.O., Zubairy, M.S.: Quantum optics. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Baker Jr., A.G.: Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space. Phys. Rev. 109, 2198–2206 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  13. Benedict, G.M., Czirjk, A.: Wigner functions, squeezing properties, and slow decoherence of a mesoscopic superposition of two-level atoms. Phys. Rev A 60, 4034–4044 (1999)

    Article  ADS  Google Scholar 

  14. Sadeghi, P., Khademi, S., Nasiri, S.: Nonclassicality indicator for the real phase-space distribution functions. Phys. Rev A 82, 012102 (2010)

    Article  ADS  Google Scholar 

  15. Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclass Opt. 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Banerji, A., Singh, R.P., Bandyopadhyay, A.: Entanglement measure using Wigner function; case of generalized vortex state formed by multiphoton subtraction. Opt. Comm. 330, 85 (2014)

    Article  ADS  Google Scholar 

  17. Simon, R.: Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  18. Taghiabadi, R., Akhtarshenas, S.J., Sarbishaei, M.: Revealing quantum correlation by negativity of the Wigner function. Quantum Inf. Proc, pp 1–22 (2016)

  19. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  21. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  22. Fanchini, F.F., Castelano, L.K., Caldeira, A.O.: Entanglement versus quantum discord in two coupled double quantum dots. New J. Phys. 12.073009 (2010)

  23. Cornelio, M.F., de Oliveira, M.C., Fanchini, F.F.: Entanglement irreversibility from quantum discord and quantum deficit. Phys. Rev. Lett. 107, 020502 (2011)

    Article  ADS  Google Scholar 

  24. Shi, M., Yang, W., Jiang, F., Du, J.: Geometric picture of quantum discord for two-qubit quantum states. J. Phys. A: Math. Theor. 44, 415304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Xu, J.: Generalizations of quantum discord. J. Phys. A: Math. Theor. 44, 445310 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Maurya, A., Mishra, M., Prakash, H.: Quantum discord and entanglement in quasi-Werner states based on bipartite superposed coherent states. arXiv:1210.2212 [quant-ph] (2012)

  27. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  28. Mani, A., Karimipour, V., Memarzadeh, L.: Comparison of parallel and antiparallel two-qubit mixed states. Phys. Rev. A 91, 012304 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ferraro, A., Paris, M.: Non-classicality criteria from phase-space representations and information-theoretical constraints are maximally inequivalent. Phys. Rev. Lett 108, 260403 (2012)

    Article  ADS  Google Scholar 

  31. Dodonov, V.V.J.: Non-classical states in quantum optics: a squeezed review of the first 75 years. Opt. B: Quantum Semiclass Opt. 4, R1–R33 (2002)

  32. Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083 (1995)

    Article  ADS  Google Scholar 

  33. He-jun, Wu, Fan, Hongyi: Two-Mode Wigner operator in \(\left\langle \eta \right| Representation\). Mod. Phys. Lett. B 11, 544 (1997)

    MathSciNet  Google Scholar 

  34. Jiang, Nian-Quan: The n-partite entangled Wigner operator and its applications in Wigner function. J. Opt. B: Quantum Semiclass Opt. 7, 264 (2005)

    Article  ADS  Google Scholar 

  35. Gisin, N.: Hidden quantum nonlocality revealed by local filters. Phys. Lett. A 210, 151 (1996)

Download references

Acknowledgments

The authors would like to thank Mustapha. Ziane for his insight and discussions on the Gisin states.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Siyouri.

Appendix

Appendix

Let us consider the Gisin states [35] based on the bipartite SCS defined as

$$\begin{aligned} \rho _{Gisin}= \frac{(1-a)}{2} \left( \left| ++\right\rangle \left\langle ++\right\rangle + \left| --\right| \left\langle -- \right| \right) + a \left| \psi \right\rangle \left\langle \psi \right| \end{aligned}$$
(28)

where \(\left| \psi \right\rangle \) is the state written in the Eq. (17)

The Wigner function of the state \(\rho _{Gisin}\) is expressed as:

$$\begin{aligned} W_{2mcsG}:= a W_{1} + ((1 - a)/2) W_{2} \end{aligned}$$
(29)

where

$$\begin{aligned} W_{1}= (n^{-})^{2} (\pi ^{ \frac{-3}{2}}) \Big ( W_{\alpha \; \alpha }\; W_{-\beta \; -\beta }-W_{\alpha \; -\alpha }\; W_{\beta \; -\beta } -W_{-\alpha \; \alpha }\; W_{-\beta \; \beta } +W_{-\alpha \; -\alpha }\; W_{\beta \; \beta } \Big ) \end{aligned}$$

and

$$\begin{aligned} W_{2}= W_{(++)_{\alpha }} W_{(++)_{\beta }} + W_{(--)_{\alpha }} W_{(--)_{\beta }} \end{aligned}$$

with,

$$\begin{aligned} \begin{aligned} W_{(++)_{\alpha }}&= \frac{(N^{+})^2}{(\pi ^{(3/2)})} W_{\alpha \; \alpha } + W_{\alpha \; -\alpha } +W_{-\alpha \; \alpha }+ W_{-\alpha \; -\alpha }\\ W_{(++)_{\beta }}&= \frac{(N^{+})^2}{(\pi ^{(3/2)})} W_{\beta \; \beta } + W_{\beta \; -\beta } +W_{-\beta \; \beta }+ W_{-\beta \; -\beta } \\ W_{(--)_{\alpha }}&= \frac{(N^{-})^2}{(\pi ^{(3/2)})} W_{\alpha \; \alpha } - W_{\alpha \; -\alpha } - W_{-\alpha \; \alpha }+ W_{-\alpha \; -\alpha }\\ W_{(--)_{\beta }}&= \frac{(N^{-})^2}{(\pi ^{(3/2)})} W_{\beta \; \beta } - W_{\beta \; -\beta } - W_{-\beta \; \beta }+ W_{-\beta \; -\beta } \end{aligned} \end{aligned}$$
(30)

We plot the Wigner function \(\mathcal {W}\) and the quantum correlations (quantum discord \(\mathcal {D}\), and entanglement E) as a function of the parameter \(\alpha \) (Fig. 6a) and as a function of the mixing parameter a (Fig. 6b).

Fig. 6
figure 6

Quantum correlations and Wigner function for the state \(\rho _{Gisin}\) for fixed values of \(p_1\) and \(q_2\) (\(p_1=q_2=0\)) with respect to coherent amplitude \(\alpha \) (a) and mixing parameter a (b). a \(a=0.6, \beta =0.99, q_1=0.01\) and \(p_2=0.51\), b \(\alpha =0.06, \beta =0.18, q_1=0.01\) and \(p_2=0.71\)

The Figures do confirm the previous conclusions derived in the main text. As a matter of fact, we clearly see from both figures that:

  • Quantum discord exists in the states even before quantum entanglement appears. This confirms the, now, obvious fact that there exist quantum correlations other than entanglement.

  • Wigner function starts being negative exactly at the same point when entanglement appears in the states. This in term confirms the main result of this paper that the Wigner function is not sensitive to all kinds of quantum correlations but only to entanglement.

It is worthwhile, in addition to these remarks, in contrast to the figures obtained for the Werner states, that the behavior of the quantum discord is not smooth and shows some sudden change at some point. This sudden change is due to the fact that at this specific point there is a change in the value on the basis that maximizes the mutual information (9) (or equivalently minimizes the conditional entropy). This sudden change in the behavior of quantum discord of the Gisin states is the subject of a work under progress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siyouri, F., El Baz, M. & Hassouni, Y. The negativity of Wigner function as a measure of quantum correlations. Quantum Inf Process 15, 4237–4252 (2016). https://doi.org/10.1007/s11128-016-1380-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1380-2

Keywords

Navigation