Skip to main content
Log in

Post-Markovian dynamics of quantum correlations: entanglement versus discord

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY–Heisenberg model in the presence of spin–orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Schrödinger, E.: The present status of quantum mechanics. Die Naturwissenschaften 23, 807 (1935)

    Article  ADS  Google Scholar 

  3. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  4. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  6. Wootres, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  7. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  8. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  9. Schlosshauer, M.: Decoherence and the Quantum to Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  10. Vedral, V.: Entanglement production in non-equilibrium thermodynamics. J. Phys. Conf. Ser. 143, 012010 (2009)

    Article  Google Scholar 

  11. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  12. Wang, J., Batelaan, H., Ponday, J., Starace, A.F.: Entanglement evolution in the presence of decoherence. J. Phys. B At. Mol. Opt. Phys. 39, 4343 (2006)

    Article  ADS  Google Scholar 

  13. Scala, M., Migliore, R., Messina, A.: Dissipation and entanglement dynamics for two interacting qubits coupled to independent reservoirs. J. Phys. A Math. Theor. 41, 435304 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Prosen, T.: Third quantization: a general method to solve master equations for quadratic open Fermi systems. New J. Phys. 10, 043026 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. Quiroga, L., Rodríguez, F.J.: Nonequilibrium thermal entanglement. Phys. Rev. A 75, 032308 (2007)

    Article  ADS  Google Scholar 

  16. Sinaysky, I., Petruccione, F., Bargarth, D.: Dynamics of nonequilibrium thermal entanglement. Phys. Rev A 78, 062301 (2008)

    Article  ADS  Google Scholar 

  17. Lorenzo, S., Plastina, F., Paternostro, M.: Geometrical characterization of non-Markovianity. Phys. Rev. A 88, 020102(R) (2013)

    Article  ADS  Google Scholar 

  18. Bylicka, B., Chruscinski, D., Maniscalco, S.: Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)

    Article  ADS  Google Scholar 

  19. Fanchini, F.F., Karpat, G., Çakmak, B., Castelano, L.K., Aguilar, G.H., Farías, O.J., Walborn, S.P., Souto Ribeiro, P.H., de Oliveira, M.C.: Non-Markovianity through accessible information. Phys. Rev. Lett. 112, 210402 (2014)

    Article  ADS  Google Scholar 

  20. Haseli, S., Karpat, G., Salimi, S., Khorashad, A.S., Fanchini, F.F., Çakmak, B., Aguilar, G.H., Walborn, S.P., Souto Ribeiro, P.H.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 (2014)

    Article  ADS  Google Scholar 

  21. Haseli, S., Salimi, S., Khorashad, A.S.: A measure of non-Markovianity for unital quantum dynamical maps. Quantum Inf. Process. 14, 3581 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Reina, J.H., Quiroga, L., Johnson, N.F.: NMR-based nanostructure switch for quantum logic. Phys. Rev. B 62, R2267 (2000)

    Article  ADS  Google Scholar 

  23. Imamoḡlu, A., Knill, E., Tian, L., Zoller, P.: Optical pumping of quantum-dot nuclear spins. Phys. Rev. Lett. 91, 017402 (2003)

    Article  ADS  Google Scholar 

  24. Khaetskii, A., Loss, D., Glazman, L.: Electron spin evolution induced by interaction with nuclei in a quantum dot. Phys. Rev. B 67, 195329 (2003)

    Article  ADS  Google Scholar 

  25. Stepanko, D., Burkard, G.: Enhancement of electron spin coherence by optical preparation of nuclear spins. Phys. Rev. Lett. 96, 136401 (2006)

    Article  ADS  Google Scholar 

  26. Lai, C.W., Maletinsky, P., Imamoḡlu, A.: Knight-field-enabled nuclear spin polarization in single quantum dots. Phys. Rev. Lett. 96, 167403 (2006)

    Article  ADS  Google Scholar 

  27. Loss, D., Divincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  28. Burkard, G., Loss, D., Divincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070 (2002)

    Article  ADS  Google Scholar 

  29. DiVincenzo, D.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  30. Legel, S., König, J., Bukard, G., Schön, G.: Generation of spin entanglement in nonequilibrium quantum dots. Phys. Rev. B 76, 085335 (2007)

    Article  ADS  Google Scholar 

  31. Legel, S., König, J., Schön, G.: Generation and detection of a spin entanglement in nonequilibrium quantum dots. New J. Phys. 10, 045016 (2008)

    Article  ADS  Google Scholar 

  32. Kavokin, K.V.: Anisotropic exchange interaction of localized conduction-band electrons in semiconductors. Phys. Rev. B 64, 075305 (2001)

    Article  ADS  Google Scholar 

  33. Dzyaloshinski, I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  34. Moriya, T.: Theory of magnetism of NiF2. Phys. Rev. 117, 635 (1960)

    Article  ADS  Google Scholar 

  35. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960)

    Article  ADS  Google Scholar 

  36. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  37. Kheirandish, F., Akhtarshenas, S.J., Mohammadi, H.: Effect of spin–orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

  38. Kheirandish, F., Akhtarshenas, S.J., Mohammadi, H.: Non-equilibrium entanglement dynamics of a two-qubit Heisenberg XY system in the presence of an inhomogeneous magnetic field and spin–orbit interaction. Eur. Phys. J. D 57, 129 (2010)

    Article  ADS  Google Scholar 

  39. Shabani, A., Lidar, D.A.: Completely positive post-Markovian master equation via a measurement approach. Phys. Rev. A 71, 020101(R) (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Dieterich, E., et al.: Single-molecule measurement of the effective temperature in non-equilibrium steady states. Nature 11, 971 (2015)

    Google Scholar 

  41. Campbell, S., et al.: Critical assessment of two-qubit post-Markovian master equations. Phys. Rev. A 85, 032120 (2012)

    Article  ADS  Google Scholar 

  42. Budini, A.A.: Post-Markovian quantum master equations from classical environment fluctuations. Phys. Rev. E 89, 012147 (2014)

    Article  ADS  Google Scholar 

  43. Sinaysky, I., Petruccione, F.: Markovian and post-Markovian dynamics of nonequilibrium thermal entanglement. arXiv:0905.0544 [quant-ph] (2009)

  44. Werlang, T., Rigolin, G.: Thermal and magnetic quantum discord in Heisenberg models. Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  45. Ferraro, A., et al.: Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank The Office of Graduate Studies and Research Vice President of The University of Isfahan for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Mohammadi.

Appendix 1: Elements of matrix P

Appendix 1: Elements of matrix P

The elements of matrix \(P(t)=[p_{ij}]_{4\times 4}\) in Eq. (18) can be written as follows:

$$\begin{aligned} p_{1\,1}= & {} \frac{1}{X_{1}Y_{2}} \left[ \frac{X_{1}^{-}Y_{2}^{+}({\hbox {e}}^{-t\gamma _{0}}X_{1} -{\hbox {e}}^{-tX_{1}}\gamma _{0})}{X_{1}-\gamma _{0}}+ \frac{X_{1}^{+}Y_{2}^{-}\left( {\hbox {e}}^{-t\gamma _{0}}Y_{2}- {\hbox {e}}^{-tY_{2}}\gamma _{0}\right) }{Y_{2}-\gamma _{0}}\right. \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}^{-}Y_{2}^{-}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t\left( X_{1}+Y_{2}-\gamma _{0}\right) }\gamma _{0}\right) }{X_{1}+Y_{2}-\gamma _{0}}+X_{1}^{+}Y_{2}^{+}\right] ,\\ p_{1\,2}= & {} \frac{X_{1}^{+}Y_{2}^{+}}{X_{1}Y_{2}}\left[ \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}Y_{2}(X_{1}+Y_{2}-2\gamma _{0})}{(X_{1}-\gamma _{0})(X_{1}+Y_{2}-\gamma _{0})(\gamma _{0}-Y_{2})}+\frac{{\hbox {e}}^{-tX_{1}}\gamma _{0}}{X_{1}-\gamma _{0}}+\frac{{\hbox {e}}^{-tY_{2}}\gamma _{0}}{Y_{2}-\gamma _{0}}\right. \\&\left. - \frac{{\hbox {e}}^{-t(X_{1}+Y_{2})}\gamma _{0}}{X_{1}+Y_{2}-\gamma _{0}}+1\right] \\ p_{1\,3}= & {} \frac{X_{1}^{+}}{X_{1}Y_{2}} \left[ -\frac{\left( {\hbox {e}}^{-tX_{1}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}} X_{1}\right) Y_{2}^{+}}{\gamma _{0}-X_{1}}+\frac{Y_{2}^{-} \left( {\hbox {e}}^{-tY_{2}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}}Y_{2}\right) }{ \gamma _{0}-Y_{2}}\right. \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}Y_{2}^{-} \left( X_{1}+Y_{2}-{\hbox {e}}^{-t(X_{1}+Y_{2}-\gamma _{0})} \gamma _{0}\right) }{-X_{1}-Y_{2}+\gamma _{0}}+Y_{2}^{+}\right] ,\\ p_{1\,4}= & {} \frac{Y_{2}^{+}}{X_{1}Y_{2}} \left[ -\frac{\left( {\hbox {e}}^{-tY_{2}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}} Y_{2}\right) X_{1}^{+}}{\gamma _{0}-Y_{2}}+\frac{X_{1}^{-} \left( {\hbox {e}}^{-tX_{1}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}}X_{1}\right) }{\gamma _{0}-X_{1}}\right. \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}^{-}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t(X_{1}+Y_{2} -\gamma _{0})}\gamma _{0}\right) }{-X_{1}-Y_{2}+\gamma _{0}}+X_{1}^{+}\right] , \end{aligned}$$
$$\begin{aligned} p_{2\,1}= & {} \frac{X_{1}^{-}Y_{1}^{-}}{X_{1}Y_{2}}\left[ \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}Y_{2}(X_{1}+Y_{2}-2\gamma _{0})}{(X_{1}-\gamma _{0})(X_{1}+Y_{2}-\gamma _{0})(\gamma _{0}-Y_{2})}+\frac{{\hbox {e}}^{-tX_{1}}\gamma _{0}}{X_{1}-\gamma _{0}}+\frac{{\hbox {e}}^{-tY_{2}}\gamma _{0}}{Y_{2}-\gamma _{0}}\right. \\&\left. - \frac{{\hbox {e}}^{-t(X_{1}+Y_{2})}\gamma _{0}}{X_{1}+Y_{2}-\gamma _{0}}+1\right] ,\\ p_{2\,2}= & {} \frac{1}{X_{1}Y_{2}}\left[ \frac{X_{1}^{+}Y_{2}^{-}({\hbox {e}}^{-t\gamma _{0}}X_{1}-{\hbox {e}}^{-tX_{1}}\gamma _{0})}{X_{1}-\gamma _{0}}+\frac{X_{1}^{-}Y_{2}^{+}\left( {\hbox {e}}^{-t\gamma _{0}}Y_{2}-{\hbox {e}}^{-tY_{2}}\gamma _{0}\right) }{Y_{2}-\gamma _{0}}\right. \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}^{+}Y_{2}^{+}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t\left( X_{1}+Y_{2}-\gamma _{0}\right) }\gamma _{0}\right) }{X_{1}+Y_{2}-\gamma _{0}}+X_{1}^{-}Y_{2}^{-}\right] ,\\ p_{2\,3}= & {} \frac{Y_{2}^{-}}{X_{1}Y_{2}} \left[ \frac{X_{1}^{+}\left( {\hbox {e}}^{-tX_{1}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}}X_{1}\right) }{\gamma _{0}-X_{1}}-\frac{\left( {\hbox {e}}^{-tY_{2}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}}Y_{2}\right) X_{1}^{-}}{\gamma _{0}-Y_{2}}\right. \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}^{+}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t(X_{1}+Y_{2}-\gamma _{0})}\gamma _{0}\right) }{-X_{1}-Y_{2}+\gamma _{0}}+X_{1}^{-}\right] ,\\ p_{2\,4}= & {} \frac{X_{1}^{-}}{X_{1}Y_{2}} \left[ -\frac{\left( {\hbox {e}}^{-tX_{1}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}} X_{1}\right) Y_{2}^{-}}{\gamma _{0}-X_{1}}+\frac{Y_{2}^{+} \left( {\hbox {e}}^{-tY_{2}}\gamma _{0}{\hbox {e}}^{-t\gamma _{0}}Y_{2}\right) }{\gamma _{0} -Y_{2}}\right. \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}Y_{2}^{+}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t(X_{1}+Y_{2}-\gamma _{0})}\gamma _{0}\right) }{-X_{1}-Y_{2}+\gamma _{0}}+Y_{2}^{-}\right] , \end{aligned}$$
$$\begin{aligned} p_{3\,1}= & {} \frac{X_{1}^{-}}{X_{1}Y_{2}} \left[ -\frac{\left( {\hbox {e}}^{-tX_{1}}\gamma _{0} -{\hbox {e}}^{-t\gamma _{0}}X_{1}\right) Y_{2}^{+}}{\gamma _{0}-X_{1}}+ \frac{Y_{2}^{-}\left( {\hbox {e}}^{-tY_{2}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}} Y_{2}\right) }{\gamma _{0}-Y_{2}}\right. \nonumber \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}Y_{2}^{-}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t(X_{1}+ Y_{2}-\gamma _{0})}\gamma _{0}\right) }{-X_{1}-Y_{2}+\gamma _{0}}+Y_{2}^{+}\right] , \nonumber \\ p_{3\,2}= & {} \frac{Y_{2}^{+}}{X_{1}Y_{2}}\left[ \frac{X_{1}^{+}\left( {\hbox {e}}^{-tX_{1}}\gamma _{0} -{\hbox {e}}^{-t\gamma _{0}}X_{1}\right) }{\gamma _{0}-X_{1}}-\frac{\left( {\hbox {e}}^{-tY_{2}} \gamma _{0}-{\hbox {e}}^{-t\gamma _{0}}Y_{2}\right) X_{1}^{-}}{\gamma _{0}-Y_{2}}\right. \nonumber \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}^{+}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t (X_{1}+Y_{2}-\gamma _{0})}\gamma _{0}\right) }{-X_{1}-Y_{2}+ \gamma _{0}}+X_{1}^{-}\right] ,\nonumber \\ p_{3\,3}= & {} \frac{1}{X_{1}Y_{2}} \left[ \frac{X_{1}^{+}Y_{2}^{+}({\hbox {e}}^{-t\gamma _{0}}X_{1} -{\hbox {e}}^{-tX_{1}}\gamma _{0})}{X_{1}-\gamma _{0}}+ \frac{X_{1}^{-}Y_{2}^{-}\left( {\hbox {e}}^{-t\gamma _{0}}Y_{2}- {\hbox {e}}^{-tY_{2}}\gamma _{0}\right) }{Y_{2}-\gamma _{0}}\right. \nonumber \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}^{+}Y_{2}^{-}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t\left( X_{1}+Y_{2}-\gamma _{0}\right) }\gamma _{0}\right) }{X_{1}+Y_{2}-\gamma _{0}}+X_{1}^{-}Y_{2}^{+}\right] ,\nonumber \\ p_{3\,4}= & {} \frac{X_{1}^{-}Y_{2}^{+}}{X_{1}Y_{2}} \left[ \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}Y_{2}(X_{1}+Y_{2}-2 \gamma _{0})}{(X_{1}-\gamma _{0})(X_{1}+Y_{2}-\gamma _{0}) (\gamma _{0}-Y_{2})}+\frac{{\hbox {e}}^{-tX_{1}}\gamma _{0}}{X_{1}-\gamma _{0}}+ \frac{{\hbox {e}}^{-tY_{2}}\gamma _{0}}{Y_{2}-\gamma _{0}}\right. \nonumber \\&\left. - \frac{{\hbox {e}}^{-t(X_{1}+Y_{2})}\gamma _{0}}{X_{1}+ Y_{2}-\gamma _{0}}+1\right] \nonumber \\ p_{4\,1}= & {} \frac{Y_{2}^{-}}{X_{1}Y_{2}}\left[ -\frac{\left( {\hbox {e}}^{-tY_{2}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}}Y_{2}\right) X_{1}^{+}}{\gamma _{0}-Y_{2}}+\frac{X_{1}^{-}\left( {\hbox {e}}^{-tX_{1}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}}X_{1}\right) }{\gamma _{0}-X_{1}}\right. \nonumber \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}^{-}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t(X_{1}+Y_{2}-\gamma _{0})}\gamma _{0}\right) }{-X_{1}-Y_{2}+\gamma _{0}}+X_{1}^{+}\right] ,\nonumber \\ p_{4\,2}= & {} \frac{X_{1}^{+}}{X_{1}Y_{2}}\left[ -\frac{\left( {\hbox {e}}^{-tX_{1}}\gamma _{0}-{\hbox {e}}^{-t\gamma _{0}}X_{1}\right) Y_{2}^{-}}{\gamma _{0}-X_{1}}+\frac{Y_{2}^{+}\left( {\hbox {e}}^{-tY_{2}}\gamma _{0}{\hbox {e}}^{-t\gamma _{0}}Y_{2}\right) }{\gamma _{0}-Y_{2}}\right. \nonumber \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}Y_{2}^{+}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t(X_{1}+Y_{2}-\gamma _{0})}\gamma _{0}\right) }{-X_{1}-Y_{2}+\gamma _{0}}+Y_{2}^{-}\right] ,\nonumber \\ p_{4\,3}= & {} \frac{X_{1}^{+}Y_{2}^{-}}{X_{1}Y_{2}} \left[ \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}Y_{2}(X_{1}+Y_{2}-2\gamma _{0})}{(X_{1}-\gamma _{0})(X_{1}+Y_{2}-\gamma _{0})(\gamma _{0}-Y_{2})}+\frac{{\hbox {e}}^{-tX_{1}}\gamma _{0}}{X_{1}-\gamma _{0}}+\frac{{\hbox {e}}^{-tY_{2}}\gamma _{0}}{Y_{2}-\gamma _{0}}\right. \nonumber \\&\left. - \frac{{\hbox {e}}^{-t(X_{1}+Y_{2})}\gamma _{0}}{X_{1}+Y_{2}-\gamma _{0}}+1\right] \nonumber \\ p_{4\,4}= & {} \frac{1}{X_{1}Y_{2}}\left[ \frac{X_{1}^{-}Y_{2}^{-}({\hbox {e}}^{-t\gamma _{0}}X_{1}-{\hbox {e}}^{-tX_{1}}\gamma _{0})}{X_{1}-\gamma _{0}}+\frac{X_{1}^{+}Y_{2}^{+}\left( {\hbox {e}}^{-t \gamma _{0}}Y_{2}-{\hbox {e}}^{-tY_{2}}\gamma _{0}\right) }{Y_{2}-\gamma _{0}}\right. \nonumber \\&\left. + \frac{{\hbox {e}}^{-t\gamma _{0}}X_{1}^{-}Y_{2}^{+}\left( X_{1}+Y_{2}-{\hbox {e}}^{-t\left( X_{1}+Y_{2}-\gamma _{0}\right) }\gamma _{0}\right) }{X_{1}+Y_{2}-\gamma _{0}}+X_{1}^{+}Y_{2}^{-}\right] . \end{aligned}$$
(21)

Here we have defined \(X_{\mu }=X_{\mu }^{+}+X_{\mu }^{-}\) and \(Y_{\mu }=Y_{\mu }^{+}+Y_{\mu }^{-}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H. Post-Markovian dynamics of quantum correlations: entanglement versus discord. Quantum Inf Process 16, 39 (2017). https://doi.org/10.1007/s11128-016-1451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1451-4

Keywords

Navigation